Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 3, Pages 89–100 (Mi fpm950)  

Triple products of Coleman's families

A. A. Panchishkin

University of Grenoble 1 — Joseph Fourier
References:
Abstract: We discuss modular forms as objects of computer algebra and as elements of certain $p$-adic Banach modules. We discuss a problem-solving approach in number theory, which is based on the use of generating functions and their connection with modular forms. In particular, the critical values of various $L$-functions of modular forms produce nontrivial but computable solutions of arithmetical problems. Namely, for a prime number we consider three classical cusp eigenforms
$$ f_j(z)=\sum_{n=1}^\infty a_{n,j}e(nz)\in\mathcal S_{k_j}(N_j,\psi_j)\quad (j=1, 2,3) $$
of weights $k_1$, $k_2$, and $k_3$, of conductors $N_1$, $N_2$, and $N_3$, and of Nebentypus characters $\psi_j\bmod N_j$. The purpose of this paper is to describe a four-variable $p$-adic $L$-function attached to Garrett's triple product of three Coleman's families
$$ k_j\mapsto\biggl\{f_{j,k_j}=\sum_{n=1}^\infty a_{n,j}(k)q^n\biggr\} $$
of cusp eigenforms of three fixed slopes $\sigma_j=v_p\bigl(\alpha_{p, j}^{(1)}(k_j)\bigr)\ge0$, where $\alpha_{p,j}^{(1)}=\alpha_{p,j}^{(1)}(k_j)$ is an eigenvalue (which depends on $k_j$) of Atkin's operator $U=U_p$.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 149, Issue 3, Pages 1246–1254
DOI: https://doi.org/10.1007/s10958-008-0063-7
Bibliographic databases:
UDC: 511.334
Language: Russian
Citation: A. A. Panchishkin, “Triple products of Coleman's families”, Fundam. Prikl. Mat., 12:3 (2006), 89–100; J. Math. Sci., 149:3 (2008), 1246–1254
Citation in format AMSBIB
\Bibitem{Pan06}
\by A.~A.~Panchishkin
\paper Triple products of Coleman's families
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 3
\pages 89--100
\mathnet{http://mi.mathnet.ru/fpm950}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2249709}
\zmath{https://zbmath.org/?q=an:1180.11014}
\elib{https://elibrary.ru/item.asp?id=9307293}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 149
\issue 3
\pages 1246--1254
\crossref{https://doi.org/10.1007/s10958-008-0063-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-39049119299}
Linking options:
  • https://www.mathnet.ru/eng/fpm950
  • https://www.mathnet.ru/eng/fpm/v12/i3/p89
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025