Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 3, Pages 101–140 (Mi fpm953)  

A characterization of the lattice group of Riemann integrable functions

A. A. Seredinskii

M. V. Lomonosov Moscow State University
References:
Abstract: In this paper, we give an algebraic characterization of the family of Riemann integrable functions in terms of lattice groups and a complete description of the Riemann extension of the lattice group of all continuous functions. We formulate a uniqueness theorem for the Riemann extension as a regular completion of the lattice group of all continuous functions.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 149, Issue 3, Pages 1255–1278
DOI: https://doi.org/10.1007/s10958-008-0064-6
Bibliographic databases:
UDC: 517.518.2+517.982.1+517.987.1
Language: Russian
Citation: A. A. Seredinskii, “A characterization of the lattice group of Riemann integrable functions”, Fundam. Prikl. Mat., 12:3 (2006), 101–140; J. Math. Sci., 149:3 (2008), 1255–1278
Citation in format AMSBIB
\Bibitem{Ser06}
\by A.~A.~Seredinskii
\paper A~characterization of the lattice group of Riemann integrable functions
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 3
\pages 101--140
\mathnet{http://mi.mathnet.ru/fpm953}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2249710}
\zmath{https://zbmath.org/?q=an:1146.26003}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 149
\issue 3
\pages 1255--1278
\crossref{https://doi.org/10.1007/s10958-008-0064-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-39049099463}
Linking options:
  • https://www.mathnet.ru/eng/fpm953
  • https://www.mathnet.ru/eng/fpm/v12/i3/p101
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025