Fizika Tverdogo Tela
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Tverdogo Tela:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Tverdogo Tela, 2013, Volume 55, Issue 11, Pages 2176–2182 (Mi ftt12611)  

This article is cited in 9 scientific papers (total in 9 papers)

Mechanical properties, strength physics and plasticity

Resonant dislocation motion in NaCl crystals in the EPR scheme in the Earth’s magnetic field with pulsed pumping

V. I. Alshitsa, E. V. Darinskayaa, V. A. Morozovb, V. M. Katsb, A. A. Lukinb

a Institute of Cristallography Russian Academy of Sciences, Moscow
b Saint Petersburg State University
Full-text PDF (293 kB) Citations (9)
Abstract: Resonant dislocation motions in NaCl(Ca) crystals under the simultaneous action of the Earth’s magnetic field $\mathbf{B}_{\mathrm{Earth}}$ ($\sim$66 $\mu$T) and a pulsed pump field $\tilde{\mathbf{B}}$ of sufficient amplitude $\tilde{B}_m$ and certain duration $\tau$ have been detected and studied. The measured dislocation path peaks $l(\tau)$ have a maximum at $\tau = \tau_r\approx$ 0.53 $\mu$s. The resonance criterion has been found to be the ordinary EPR condition in which the $g$-factor is close to 2 and the optimum inverse pulse duration $\tau_r^{-1}$ is used instead of the harmonic pump field frequency $\nu_r$. The largest peak $l(\tau)$ height is reached at mutually orthogonal dislocation $(\mathbf{L})$ and magnetic field ($\mathbf{B}_{\mathrm{Earth}}$ and $\tilde{\mathbf{B}}$) orientations. Pulsed field rotation to the position $\tilde{\mathbf{B}}\parallel \mathbf{B}_{\mathrm{Earth}}$ significantly decreases but does not “kill” the effect. For dislocations parallel to the Earth’s field $(\mathbf{L}\parallel\mathbf{B}_{\mathrm{Earth}})$, the resonance almost disappears even at $\tilde{\mathbf{B}}\perp\mathbf{B}_{\mathrm{Earth}}$. In the optimum geometry of experiments, as the pump field amplitude $\tilde{B}_m$ decreases from 17.6 to 10 $\mu$T, the path peak height $l_r = l(\tau_r)$ decreases only by 7.5%, remaining at the level of $l_r\sim$ 10$^2$ $\mu$m, and at a further fall-off to 4 $\mu$T, it rapidly decreases to background values. In this case, the relative density of mobile dislocations similarly decreases from $\sim$90 to 40%. Possible physical mechanisms of the observed effect have been discussed.
Received: 20.05.2013
English version:
Physics of the Solid State, 2013, Volume 55, Issue 11, Pages 2289–2296
DOI: https://doi.org/10.1134/S1063783413110024
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. I. Alshits, E. V. Darinskaya, V. A. Morozov, V. M. Kats, A. A. Lukin, “Resonant dislocation motion in NaCl crystals in the EPR scheme in the Earth’s magnetic field with pulsed pumping”, Fizika Tverdogo Tela, 55:11 (2013), 2176–2182; Phys. Solid State, 55:11 (2013), 2289–2296
Citation in format AMSBIB
\Bibitem{AlsDarMor13}
\by V.~I.~Alshits, E.~V.~Darinskaya, V.~A.~Morozov, V.~M.~Kats, A.~A.~Lukin
\paper Resonant dislocation motion in NaCl crystals in the EPR scheme in the Earth’s magnetic field with pulsed pumping
\jour Fizika Tverdogo Tela
\yr 2013
\vol 55
\issue 11
\pages 2176--2182
\mathnet{http://mi.mathnet.ru/ftt12611}
\elib{https://elibrary.ru/item.asp?id=20323039}
\transl
\jour Phys. Solid State
\yr 2013
\vol 55
\issue 11
\pages 2289--2296
\crossref{https://doi.org/10.1134/S1063783413110024}
Linking options:
  • https://www.mathnet.ru/eng/ftt12611
  • https://www.mathnet.ru/eng/ftt/v55/i11/p2176
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Tverdogo Tela Fizika Tverdogo Tela
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025