Informatika i Ee Primeneniya [Informatics and its Applications]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Inform. Primen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Informatika i Ee Primeneniya [Informatics and its Applications], 2020, Volume 14, Issue 1, Pages 48–55
DOI: https://doi.org/10.14357/19922264200107
(Mi ia644)
 

This article is cited in 1 scientific paper (total in 1 paper)

Risk-neutral dynamics for the ARIMA-GARCH random process with errors distributed according to the Johnson's $S_U$ law

A. R. Danilishina, D. Yu. Golembiovskyab

a Department of Operations Research, Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, 1-52 Leninskiye Gory, Moscow 119991, GSP-1, Russian Federation
b Department of Banking, Sinergy University, 80-G Leningradskiy Prospect, Moscow 125190, Russian Federation
Full-text PDF (207 kB) Citations (1)
References:
Abstract: Risk-neutral world is one of the fundamental principles of financial mathematics, for definition of a fair value of derivative financial instruments. The article deals with the construction of risk-neutral dynamics for the ARIMA-GARCH (Autoregressive Integrated Moving Average, Generalized AutoRegressive Conditional Heteroskedasticity) random process with errors distributed according to the Johnson's $S_U$ law. Methods for finding risk-neutral coefficients require the existence of a generating function of moments (examples of such transformations are the Escher transformation, the extended Girsanov principle). A generating function of moments is not known for Student and Johnson's $S_U$ distributions. The authors form a generating function of moments for the Johnson's $S_U$ distribution and prove that a modification of the extended Girsanov principle may obtain a risk-neutral measure with respect to the chosen distribution.
Keywords: ARIMA, GARCH, risk-neutral measure, Girsanov extended principle, Johnson's $S_U$, option pricing.
Received: 23.06.2019
Document Type: Article
Language: Russian
Citation: A. R. Danilishin, D. Yu. Golembiovsky, “Risk-neutral dynamics for the ARIMA-GARCH random process with errors distributed according to the Johnson's $S_U$ law”, Inform. Primen., 14:1 (2020), 48–55
Citation in format AMSBIB
\Bibitem{DanGol20}
\by A.~R.~Danilishin, D.~Yu.~Golembiovsky
\paper Risk-neutral dynamics for~the~ARIMA-GARCH random process with~errors distributed according to~the~Johnson's $S_U$ law
\jour Inform. Primen.
\yr 2020
\vol 14
\issue 1
\pages 48--55
\mathnet{http://mi.mathnet.ru/ia644}
\crossref{https://doi.org/10.14357/19922264200107}
Linking options:
  • https://www.mathnet.ru/eng/ia644
  • https://www.mathnet.ru/eng/ia/v14/i1/p48
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Информатика и её применения
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025