|
|
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2002, Issue 2(25), Pages 47–50
(Mi iimi266)
|
|
|
|
On global Lyapunov reducibility of two-dimensional linear time-invariant control systems
V. A. Zaitsev Udmurt State University, Izhevsk
Abstract:
Let the stationary system $\dot x=Ax+Bu, x\in\mathbb{R}^2, u\in\mathbb{R}^m$ is totally controllable. Then it possesses the property of global Lyapunov reducibility in class of stationary controls $u=Ux$, that is for any fixed stationary system $\dot y=Cy$ there exists the time-independent matrix $U$, such that the system $\dot x=(A+BU)x$ with this matrix is asymptotically equivalent (kinematically similar) to the above fixed system.
Received: 01.04.2002
Citation:
V. A. Zaitsev, “On global Lyapunov reducibility of two-dimensional linear time-invariant control systems”, Izv. IMI UdGU, 2002, no. 2(25), 47–50
Linking options:
https://www.mathnet.ru/eng/iimi266 https://www.mathnet.ru/eng/iimi/y2002/i2/p47
|
| Statistics & downloads: |
| Abstract page: | 248 | | Full-text PDF : | 81 | | References: | 78 |
|