Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2021, Volume 57, Pages 190–205
DOI: https://doi.org/10.35634/2226-3594-2021-57-10
(Mi iimi417)
 

MATHEMATICS

Mixed type integro-differential equation with fractional order Caputo operators and spectral parameters

T. K. Yuldasheva, E. T. Karimovb

a National University of Uzbekistan, ul. University, 4, Tashkent, 100174, Uzbekistan
b V. I. Romanovskiy Institute of Mathematics of Academy of Sciences of Uzbekistan, ul. University, 4a, Tashkent, 100174, Uzbekistan
References:
Abstract: The issues of unique solvability of a boundary value problem for a mixed type integro-differential equation with two Caputo time-fractional operators and spectral parameters are considered. A mixed type integro-differential equation is a partial integro-differential equation of fractional order in both positive and negative parts of multidimensional rectangular domain under consideration. The fractional Caputo operator's order is less in the positive part of the domain, than the order of Caputo operator in the negative part of the domain. Using the method of Fourier series, two systems of countable systems of ordinary fractional integro-differential equations with degenerate kernels are obtained. Further, a method of degenerate kernels is used. To determine arbitrary integration constants, a system of algebraic equations is obtained. From this system, regular and irregular values of spectral parameters are calculated. The solution of the problem under consideration is obtained in the form of Fourier series. The unique solvability of the problem for regular values of spectral parameters is proved. To prove the convergence of Fourier series, the properties of the Mittag-Leffler function, Cauchy-Schwarz inequality and Bessel inequality are used. The continuous dependence of the problem solution on a small parameter for regular values of spectral parameters is also studied. The results are formulated as a theorem.
Keywords: integro-differential equation, mixed type equation, small parameter, spectral parameters, fractional Caputo operators, unique solvability.
Received: 09.08.2020
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: English
Citation: T. K. Yuldashev, E. T. Karimov, “Mixed type integro-differential equation with fractional order Caputo operators and spectral parameters”, Izv. IMI UdGU, 57 (2021), 190–205
Citation in format AMSBIB
\Bibitem{YulKar21}
\by T.~K.~Yuldashev, E.~T.~Karimov
\paper Mixed type integro-differential equation with fractional order Caputo operators and spectral parameters
\jour Izv. IMI UdGU
\yr 2021
\vol 57
\pages 190--205
\mathnet{http://mi.mathnet.ru/iimi417}
\crossref{https://doi.org/10.35634/2226-3594-2021-57-10}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000661445200009}
Linking options:
  • https://www.mathnet.ru/eng/iimi417
  • https://www.mathnet.ru/eng/iimi/v57/p190
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025