Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2008, Volume 72, Issue 3, Pages 565–579
DOI: https://doi.org/10.1070/IM2008v072n03ABEH002411
(Mi im1138)
 

This article is cited in 1 scientific paper (total in 1 paper)

Algebraic independence of $p$-adic numbers

Yu. V. Nesterenko

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We prove lower bounds for the transcendence degree of fields generated by values of the $p$-adic exponential function. In particular, we estimate the transcendence degree of the field $\mathbb Q(e^{\alpha_1},\dots,e^{\alpha_d})$, where $\alpha_1,\dots,\alpha_d$ are algebraic (over the field of rational numbers) $p$-adic numbers that form a basis of a finite extension of $\mathbb Q$.
Received: 23.05.2006
Bibliographic databases:
UDC: 511.464
MSC: 11J85, 11J81
Language: English
Original paper language: Russian
Citation: Yu. V. Nesterenko, “Algebraic independence of $p$-adic numbers”, Izv. Math., 72:3 (2008), 565–579
Citation in format AMSBIB
\Bibitem{Nes08}
\by Yu.~V.~Nesterenko
\paper Algebraic independence of $p$-adic numbers
\jour Izv. Math.
\yr 2008
\vol 72
\issue 3
\pages 565--579
\mathnet{http://mi.mathnet.ru/eng/im1138}
\crossref{https://doi.org/10.1070/IM2008v072n03ABEH002411}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2432756}
\zmath{https://zbmath.org/?q=an:1145.11055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000257879200006}
\elib{https://elibrary.ru/item.asp?id=11570605}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48749099290}
Linking options:
  • https://www.mathnet.ru/eng/im1138
  • https://doi.org/10.1070/IM2008v072n03ABEH002411
  • https://www.mathnet.ru/eng/im/v72/i3/p159
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:930
    Russian version PDF:361
    English version PDF:395
    References:89
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025