|
This article is cited in 11 scientific papers (total in 11 papers)
Representation of a tetrad
L. A. Nazarova
Abstract:
A complete description is given herein of finitely generated torsionless modules over the ring
$$
A=\{(a_1,a_2,a_3,a_4)\mid a_i\in A_i,i=1,\dots,4,\ a_1\varepsilon_1=a_2\varepsilon_2=a_3\varepsilon_3=a_4\varepsilon_4\},
$$
where $A_1$, $A_2$, $A_3$, $A_4$ are local Dedekind rings with the same residue field $k$, and $\varepsilon_i$ is the homomorphism of $A_i$ onto $k$.
Received: 01.03.1967
Citation:
L. A. Nazarova, “Representation of a tetrad”, Math. USSR-Izv., 1:6 (1967), 1305–1321
Linking options:
https://www.mathnet.ru/eng/im2592https://doi.org/10.1070/IM1967v001n06ABEH000619 https://www.mathnet.ru/eng/im/v31/i6/p1361
|
|