Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2010, Volume 74, Issue 2, Pages 347–378
DOI: https://doi.org/10.1070/IM2010v074n02ABEH002489
(Mi im2745)
 

On the topological stability of continuous functions in certain spaces related to Fourier series

V. V. Lebedev

Moscow State Institute of Electronics and Mathematics (Technical University)
References:
Abstract: We show that the following properties of a continuous function $f$ on the circle $\mathbb T$ are equivalent: the sequence $\widehat{f\circ h}$ of the Fourier coefficients of the superposition $f\circ h$ belongs to the weak $l^1$ for every homeomorphism $h$ of the circle onto itself; $f$ is a function of bounded quadratic variation. We obtain similar results for spaces of functions whose sequence of Fourier coefficients belongs to the weak $l^p$, $1<p<2$, for spaces $A_p$ of functions $f$ with $\widehat{f}\in l^p$, for the Sobolev spaces $W_2^\lambda$, and for other spaces of functions on $\mathbb T$. Under rather general assumptions on a space $\mathbb X$ of functions on the circle, we give a necessary condition for a given continuous function $f$ to stay in $\mathbb X$ for every change of variable. We also consider the multidimensional case, which is essentially different from the one-dimensional case. In particular, we show that if $p<2$ and $f$ is a continuous function on the torus $\mathbb T^d$, $d\geqslant2$, such that $f\circ h\in A_p(\mathbb T^d)$ for every homeomorphism $h\colon \mathbb T^d\to\mathbb T^d$, then $f$ is constant.
Keywords: homeomorphisms of the circle, Fourier series.
Received: 12.11.2007
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 42A16, 42B05
Language: English
Original paper language: Russian
Citation: V. V. Lebedev, “On the topological stability of continuous functions in certain spaces related to Fourier series”, Izv. Math., 74:2 (2010), 347–378
Citation in format AMSBIB
\Bibitem{Leb10}
\by V.~V.~Lebedev
\paper On the topological stability of continuous functions in certain spaces related to Fourier series
\jour Izv. Math.
\yr 2010
\vol 74
\issue 2
\pages 347--378
\mathnet{http://mi.mathnet.ru/eng/im2745}
\crossref{https://doi.org/10.1070/IM2010v074n02ABEH002489}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2675271}
\zmath{https://zbmath.org/?q=an:1205.42006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..347L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277164200004}
\elib{https://elibrary.ru/item.asp?id=20358718}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953865261}
Linking options:
  • https://www.mathnet.ru/eng/im2745
  • https://doi.org/10.1070/IM2010v074n02ABEH002489
  • https://www.mathnet.ru/eng/im/v74/i2/p131
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:967
    Russian version PDF:278
    English version PDF:64
    References:111
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026