|
This article is cited in 5 scientific papers (total in 5 papers)
The spectral function of a singular differential operator of order $2m$
A. I. Kozko, A. S. Pechentsov M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
We study the spectral function of a self-adjoint semibounded below differential operator on a Hilbert space $L_2[0,\infty)$ and obtain the formulae for the spectral function of the operator $(-1)^{m}y^{(2m)}(x)$ with general boundary conditions at the zero. In particular, for the boundary conditions $y(0)=y'(0)=\dots=y^{(m-1)}(0)=0$ we find the explicit form of the spectral function $\Theta_{mB'}(x,x,\lambda)$ on the diagonal $x=y$ for $\lambda \geqslant 0$.
Keywords:
spectral function, eigenvalues, self-adjoint differential operator, regularized traces, singular differential operators, Green's function.
Received: 07.03.2008 Revised: 31.10.2009
Citation:
A. I. Kozko, A. S. Pechentsov, “The spectral function of a singular differential operator of order $2m$”, Izv. Math., 74:6 (2010), 1205–1224
Linking options:
https://www.mathnet.ru/eng/im2780https://doi.org/10.1070/IM2010v074n06ABEH002521 https://www.mathnet.ru/eng/im/v74/i6/p107
|
| Statistics & downloads: |
| Abstract page: | 872 | | Russian version PDF: | 268 | | English version PDF: | 51 | | References: | 127 | | First page: | 27 |
|