Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2000, Volume 64, Issue 5, Pages 891–914
DOI: https://doi.org/10.1070/im2000v064n05ABEH000303
(Mi im303)
 

This article is cited in 1 scientific paper (total in 1 paper)

A differential-geometrical criterion for quadratic Veronese embeddings

V. V. Konnov

Moscow State Pedagogical University
References:
Abstract: We obtain a criterion for quadratic Veronese varieties. We prove that in the set of smooth $n$-dimensional submanifolds of the projective space $P^N$ of dimension $N=n(n+3)/2$ only the Veronese varieties have the following two properties: (i) the tangent projective spaces at any two points intersect in a point, (ii) the osculating projective space at every point coincides with the ambient space. This result is a generalization to arbitrary $n$ of the criterion for two-dimensional Veronese surfaces in $P^5$ proved by Griffiths and Harris. We also find a criterion for a pair of submanifolds of $P^N$ to be contained in the same Veronese variety. We obtain calculation formulae that enable one to use these criteria in practice.
Received: 10.03.1999
Bibliographic databases:
Language: English
Original paper language: Russian
Citation: V. V. Konnov, “A differential-geometrical criterion for quadratic Veronese embeddings”, Izv. Math., 64:5 (2000), 891–914
Citation in format AMSBIB
\Bibitem{Kon00}
\by V.~V.~Konnov
\paper A~differential-geometrical criterion for quadratic Veronese embeddings
\jour Izv. Math.
\yr 2000
\vol 64
\issue 5
\pages 891--914
\mathnet{http://mi.mathnet.ru/eng/im303}
\crossref{https://doi.org/10.1070/im2000v064n05ABEH000303}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1789185}
\zmath{https://zbmath.org/?q=an:0984.14017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000166683400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746972390}
Linking options:
  • https://www.mathnet.ru/eng/im303
  • https://doi.org/10.1070/im2000v064n05ABEH000303
  • https://www.mathnet.ru/eng/im/v64/i5/p21
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025