Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2011, Volume 75, Issue 4, Pages 665–680
DOI: https://doi.org/10.1070/IM2011v075n04ABEH002548
(Mi im4458)
 

This article is cited in 11 scientific papers (total in 11 papers)

On conditions for invertibility of difference and differential operators in weight spaces

M. S. Bichegkuev

North-Ossetia State University
References:
Abstract: We obtain necessary and sufficient conditions for the invertibility of the difference operator $\mathcal{D}_E\colon D(\mathcal{D}_E)\subset l^p_\alpha \to l^p_\alpha$, $(\mathcal{D}_E x)(n)=x(n+1)-Bx(n)$, $n\in \mathbb{Z}_+$, whose domain $D(\mathcal{D}_E)$ is given by the condition $x(0)\in E$, where $l^p_\alpha=l^p_\alpha(\mathbb{Z}_+,X)$, $p\in[1,\infty]$, is the Banach space of sequences (of vectors in a Banach space $X$) summable with weight $\alpha\colon\mathbb{Z}_+\to (0,\infty)$ for $p\in[1,\infty)$ and bounded with respect to $\alpha$ for $p=\infty$, $B\colon X\to X $ is a bounded linear operator, and $E$ is a closed $B$-invariant subspace of $X$. We give applications to the invertibility of differential operators with an unbounded operator coefficient (the generator of a strongly continuous operator semigroup) in weight spaces of functions.
Keywords: difference operator, spectrum of an operator, invertible operator, weight spaces of sequences and functions, linear relation, differential operator.
Received: 11.02.2010
Revised: 18.11.2010
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 47B37, 47B39
Language: English
Original paper language: Russian
Citation: M. S. Bichegkuev, “On conditions for invertibility of difference and differential operators in weight spaces”, Izv. Math., 75:4 (2011), 665–680
Citation in format AMSBIB
\Bibitem{Bic11}
\by M.~S.~Bichegkuev
\paper On conditions for invertibility of difference and differential operators in weight spaces
\jour Izv. Math.
\yr 2011
\vol 75
\issue 4
\pages 665--680
\mathnet{http://mi.mathnet.ru/eng/im4458}
\crossref{https://doi.org/10.1070/IM2011v075n04ABEH002548}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2866184}
\zmath{https://zbmath.org/?q=an:1228.47034}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011IzMat..75..665B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294215000001}
\elib{https://elibrary.ru/item.asp?id=20358798}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053519927}
Linking options:
  • https://www.mathnet.ru/eng/im4458
  • https://doi.org/10.1070/IM2011v075n04ABEH002548
  • https://www.mathnet.ru/eng/im/v75/i4/p3
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025