Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2005, Volume 69, Issue 5, Pages 865–912
DOI: https://doi.org/10.1070/IM2005v069n05ABEH001663
(Mi im654)
 

This article is cited in 6 scientific papers (total in 6 papers)

First-order invariants and cohomology of spaces of embeddings of self-intersecting curves in $\mathbb R^n$

V. A. Vassilievab

a Steklov Mathematical Institute, Russian Academy of Sciences
b Independent University of Moscow
References:
Abstract: We study the cohomology of the space of generic immersions $\mathbb R^1\to\mathbb R^n$, $n\geqslant3$, with a fixed set of transversal self-intersections. In particular, we study isotopy invariants of such immersions when $n=3$, calculate the lower cohomology groups of this space for $n>3$, and define and calculate the groups of first-order invariants of such immersions for $n=3$. We investigate the representability of these invariants by rational combinatorial formulae that generalize the classical formula for the linking number of two curves in $\mathbb R^3$. We prove the existence of such combinatorial formulae with half-integer coefficients and construct the topological obstruction to their integrality. As a corollary, it is proved that one of the basic 4th order knot invariants cannot be represented by an integral Polyak–Viro formula. The structure of the cohomology groups under investigation depends on the existence of a planar curve with a given self-intersection type. On the other hand, one can use the self-intersection type to construct automatically a chain complex calculating these cohomology groups. This gives a simple homological criterion for the existence of such a planar curve.
Received: 29.12.2004
Bibliographic databases:
Document Type: Article
UDC: 515.16
MSC: 55R80, 57M25
Language: English
Original paper language: Russian
Citation: V. A. Vassiliev, “First-order invariants and cohomology of spaces of embeddings of self-intersecting curves in $\mathbb R^n$”, Izv. Math., 69:5 (2005), 865–912
Citation in format AMSBIB
\Bibitem{Vas05}
\by V.~A.~Vassiliev
\paper First-order invariants and cohomology of spaces of embeddings of self-intersecting curves in~$\mathbb R^n$
\jour Izv. Math.
\yr 2005
\vol 69
\issue 5
\pages 865--912
\mathnet{http://mi.mathnet.ru/eng/im654}
\crossref{https://doi.org/10.1070/IM2005v069n05ABEH001663}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2179414}
\zmath{https://zbmath.org/?q=an:1113.55014}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234901500001}
\elib{https://elibrary.ru/item.asp?id=9182088}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645459934}
Linking options:
  • https://www.mathnet.ru/eng/im654
  • https://doi.org/10.1070/IM2005v069n05ABEH001663
  • https://www.mathnet.ru/eng/im/v69/i5/p3
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025