|
This article is cited in 10 scientific papers (total in 10 papers)
Homological dimensions and Van den Bergh isomorphisms for nuclear Fréchet algebras
A. Yu. Pirkovskii National Research University "Higher School of Economics"
Abstract:
We prove the equation $\operatorname{w{.}dg} A=\operatorname{w{.}db} A$
for every nuclear Fréchet–Arens–Michael algebra $A$ of finite weak
bidimension, where $\operatorname{w{.}dg} A$ is the weak global dimension
and $\operatorname{w{.}db} A$ the weak bidimension of $A$. Assuming
that $A$ has a projective bimodule resolution of finite type,
we establish the estimate $\operatorname{db}A\le\operatorname{dg}A+1$,
where $\operatorname{dg} A$ is the global dimension and
$\operatorname{db} A$ the bidimension of $A$. We also prove that
$\operatorname{dg}A=\operatorname{db}A=\operatorname{w{.}dg}A=
\operatorname{w{.}db} A=n$ for all nuclear Fréchet–Arens–Michael algebras
satisfying the Van den Bergh conditions $\operatorname{VdB}(n)$.
As an application, we calculate the homological dimensions
of smooth and complex-analytic quantum tori.
Keywords:
nuclear Fréchet algebra, global dimension, bidimension, Van den Bergh isomorphisms, Hochschild homology.
Received: 19.01.2011 Revised: 20.04.2011
Citation:
A. Yu. Pirkovskii, “Homological dimensions and Van den Bergh isomorphisms for nuclear Fréchet algebras”, Izv. Math., 76:4 (2012), 702–759
Linking options:
https://www.mathnet.ru/eng/im6792https://doi.org/10.1070/IM2012v076n04ABEH002603 https://www.mathnet.ru/eng/im/v76/i4/p65
|
|