Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2008, Volume 72, Issue 3, Pages 413–427
DOI: https://doi.org/10.1070/IM2008v072n03ABEH002406
(Mi im696)
 

This article is cited in 11 scientific papers (total in 11 papers)

Holomorphic classification of four-dimensional surfaces in $\mathbb C^3$

V. K. Beloshapkaa, V. V. Ezhovb, G. Schmalzc

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b University of Adelaide
c University of New England
References:
Abstract: We use the method of model surfaces to study real four-dimensional submanifolds of $\mathbb C^3$. We prove that the dimension of the holomorphic symmetry group of any germ of an analytic four-dimensional manifold does not exceed 5 if this dimension is finite. (There are only two exceptional cases of infinite dimension.) The envelope of holomorphy of the model surface is calculated. We construct a normal form for arbitrary germs and use it to give a holomorphic classification of completely non-degenerate germs. It is shown that the existence of a completely non-degenerate CR-structure imposes strong restrictions on the topological structure of the manifold. In particular, the four-sphere $S^4$ admits no completely non-degenerate embedding into a three-dimensional complex manifold.
Received: 30.04.2004
Revised: 02.03.2007
Bibliographic databases:
UDC: 517.55+514.76
MSC: 32V40
Language: English
Original paper language: Russian
Citation: V. K. Beloshapka, V. V. Ezhov, G. Schmalz, “Holomorphic classification of four-dimensional surfaces in $\mathbb C^3$”, Izv. Math., 72:3 (2008), 413–427
Citation in format AMSBIB
\Bibitem{BelEzhSch08}
\by V.~K.~Beloshapka, V.~V.~Ezhov, G.~Schmalz
\paper Holomorphic classification of four-dimensional surfaces in~$\mathbb C^3$
\jour Izv. Math.
\yr 2008
\vol 72
\issue 3
\pages 413--427
\mathnet{http://mi.mathnet.ru/eng/im696}
\crossref{https://doi.org/10.1070/IM2008v072n03ABEH002406}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2432751}
\zmath{https://zbmath.org/?q=an:1155.32025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000257879200001}
\elib{https://elibrary.ru/item.asp?id=11570600}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48749122448}
Linking options:
  • https://www.mathnet.ru/eng/im696
  • https://doi.org/10.1070/IM2008v072n03ABEH002406
  • https://www.mathnet.ru/eng/im/v72/i3/p3
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025