Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2007, Volume 71, Issue 5, Pages 895–938
DOI: https://doi.org/10.1070/IM2007v071n05ABEH002378
(Mi im699)
 

This article is cited in 3 scientific papers (total in 3 papers)

Approximation and reconstruction of the derivatives of functions satisfying mixed Hölder conditions

S. N. Kudryavtsev

Dorodnitsyn Computing Centre of the Russian Academy of Sciences
References:
Abstract: We obtain upper and lower bounds for the best accuracy of approximation in Stechkin's problem for the differentiation operator and in the problem of the reconstruction of the derivative from the values of the function at a given number of points for Nikol'skii and Besov classes of functions satisfying mixed Hölder's conditions. These estimates give the order of these quantities for almost all values of the parameters involved.
Keywords: accuracy, approximation, differential operator, recovery, derivative, function values, mixed.
Received: 07.06.2005
Bibliographic databases:
UDC: 517.5
MSC: 41A63, 41A46, 46E35
Language: English
Original paper language: Russian
Citation: S. N. Kudryavtsev, “Approximation and reconstruction of the derivatives of functions satisfying mixed Hölder conditions”, Izv. Math., 71:5 (2007), 895–938
Citation in format AMSBIB
\Bibitem{Kud07}
\by S.~N.~Kudryavtsev
\paper Approximation and reconstruction of the derivatives of functions satisfying mixed H\"older conditions
\jour Izv. Math.
\yr 2007
\vol 71
\issue 5
\pages 895--938
\mathnet{http://mi.mathnet.ru/eng/im699}
\crossref{https://doi.org/10.1070/IM2007v071n05ABEH002378}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2362873}
\zmath{https://zbmath.org/?q=an:1129.41011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000252092800002}
\elib{https://elibrary.ru/item.asp?id=9597430}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-37549008705}
Linking options:
  • https://www.mathnet.ru/eng/im699
  • https://doi.org/10.1070/IM2007v071n05ABEH002378
  • https://www.mathnet.ru/eng/im/v71/i5/p37
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:557
    Russian version PDF:241
    English version PDF:20
    References:62
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025