Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2007, Volume 71, Issue 6, Pages 1079–1104
DOI: https://doi.org/10.1070/IM2007v071n06ABEH002382
(Mi im728)
 

This article is cited in 5 scientific papers (total in 5 papers)

Lubin–Tate extensions, an elementary approach

Yu. L. Ershov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: We give an elementary proof of the assertion that the Lubin–Tate extension $L\geqslant K$ is an Abelian extension whose Galois group is isomorphic to $U_K/N_{L/K}(U_L)$ for arbitrary fields $K$ that have Henselian discrete valuation rings with finite residue fields. The term ‘elementary’ only means that the proofs are algebraic (that is, no transcedental methods are used [1], pp. 327, 332).
Received: 20.12.2005
Bibliographic databases:
UDC: 510.53+512.52
MSC: 11S31, 14L05
Language: English
Original paper language: Russian
Citation: Yu. L. Ershov, “Lubin–Tate extensions, an elementary approach”, Izv. Math., 71:6 (2007), 1079–1104
Citation in format AMSBIB
\Bibitem{Ers07}
\by Yu.~L.~Ershov
\paper Lubin--Tate extensions, an elementary approach
\jour Izv. Math.
\yr 2007
\vol 71
\issue 6
\pages 1079--1104
\mathnet{http://mi.mathnet.ru/eng/im728}
\crossref{https://doi.org/10.1070/IM2007v071n06ABEH002382}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2378693}
\zmath{https://zbmath.org/?q=an:1150.12001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000252675200001}
\elib{https://elibrary.ru/item.asp?id=9602115}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38849143819}
Linking options:
  • https://www.mathnet.ru/eng/im728
  • https://doi.org/10.1070/IM2007v071n06ABEH002382
  • https://www.mathnet.ru/eng/im/v71/i6/p3
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025