Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2012, Volume 76, Issue 4, Pages 688–701
DOI: https://doi.org/10.1070/IM2012v076n04ABEH002602
(Mi im7301)
 

This article is cited in 5 scientific papers (total in 5 papers)

On the rate of convergence of orthorecursive expansions over non-orthogonal wavelets

A. Yu. Kudryavtsev

Moscow State Institute of International Relations (University) of the Ministry for Foreign Affairs of Russia
References:
Abstract: We consider orthorecursive expansions (a generalization of orthogonal series) over families of non-orthogonal wavelets formed by the dyadic dilations and integer shifts of a given function $\varphi$. We estimate the rate of convergence of such expansions under some fairly relaxed restrictions on $\varphi$ and give examples of these estimates in some concrete cases.
Keywords: orthorecursive expansion, wavelets, Parseval's identity, greedy algorithm, rate of convergence, computational stability, Faber–Schauder system.
Received: 25.02.2011
Revised: 19.07.2011
Bibliographic databases:
Document Type: Article
UDC: 517.518+517.982
MSC: 42C15, 46E20
Language: English
Original paper language: Russian
Citation: A. Yu. Kudryavtsev, “On the rate of convergence of orthorecursive expansions over non-orthogonal wavelets”, Izv. Math., 76:4 (2012), 688–701
Citation in format AMSBIB
\Bibitem{Kud12}
\by A.~Yu.~Kudryavtsev
\paper On the rate of convergence of orthorecursive expansions over non-orthogonal wavelets
\jour Izv. Math.
\yr 2012
\vol 76
\issue 4
\pages 688--701
\mathnet{http://mi.mathnet.ru/eng/im7301}
\crossref{https://doi.org/10.1070/IM2012v076n04ABEH002602}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3013271}
\zmath{https://zbmath.org/?q=an:1253.42031}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012IzMat..76..688K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000308069200004}
\elib{https://elibrary.ru/item.asp?id=20425217}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865232890}
Linking options:
  • https://www.mathnet.ru/eng/im7301
  • https://doi.org/10.1070/IM2012v076n04ABEH002602
  • https://www.mathnet.ru/eng/im/v76/i4/p49
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025