Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2013, Volume 77, Issue 3, Pages 581–593
DOI: https://doi.org/10.1070/IM2013v077n03ABEH002650
(Mi im7981)
 

Homotopy groups as centres of finitely presented groups

J. Wua, R. V. Mikhailovbcd

a Department of Mathematics, National University of Singapore
b Saint-Petersburg State University
c Steklov Mathematical Institute, Russian Academy of Sciences
d Institute for Advanced Study, Princeton, NJ
References:
Abstract: For every finite Abelian group $A$ and integer $n\geqslant 3$ we construct a finitely presented group defined by explicit generators and relations such that its centre is isomorphic to $\pi_n(\Sigma K(A,1))$.
Keywords: homotopy theory, homotopy groups, simplicial groups, finitely presented groups.
Funding agency Grant number
Ministry of Education, Singapore AcRF Tier 1, WBS no. R-146-000-137-112
AcRF Tier 2, WBS no. R-146-000-143-112
National Natural Science Foundation of China 11028104
Ministry of Education and Science of the Russian Federation 11.G34.31.0026
Received: 21.03.2012
Revised: 23.07.2012
Bibliographic databases:
Document Type: Article
UDC: 512.7
Language: English
Original paper language: Russian
Citation: J. Wu, R. V. Mikhailov, “Homotopy groups as centres of finitely presented groups”, Izv. Math., 77:3 (2013), 581–593
Citation in format AMSBIB
\Bibitem{WuMik13}
\by J.~Wu, R.~V.~Mikhailov
\paper Homotopy groups as centres of finitely presented groups
\jour Izv. Math.
\yr 2013
\vol 77
\issue 3
\pages 581--593
\mathnet{http://mi.mathnet.ru/eng/im7981}
\crossref{https://doi.org/10.1070/IM2013v077n03ABEH002650}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3098792}
\zmath{https://zbmath.org/?q=an:06196290}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013IzMat..77..581W}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320769300008}
\elib{https://elibrary.ru/item.asp?id=20359190}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879905098}
Linking options:
  • https://www.mathnet.ru/eng/im7981
  • https://doi.org/10.1070/IM2013v077n03ABEH002650
  • https://www.mathnet.ru/eng/im/v77/i3/p149
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025