Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 1, Pages 3–23
DOI: https://doi.org/10.1070/IM8306
(Mi im8306)
 

This article is cited in 23 scientific papers (total in 23 papers)

Central limit theorem on hyperbolic groups

Y. Benoista, J.-F. Quintb

a Paris-Sud University 11
b Université Bordeaux 1
References:
Abstract: We prove a central limit theorem for random walks with finite variance on Gromov hyperbolic groups.
Keywords: central limit theorem, hyperbolic groups, boundaries, cocycles, martingales, complete convergence, stationary measures.
Received: 03.04.2014
Bibliographic databases:
Document Type: Article
UDC: 517.938+519.21
Language: English
Original paper language: Russian
Citation: Y. Benoist, J.-F. Quint, “Central limit theorem on hyperbolic groups”, Izv. Math., 80:1 (2016), 3–23
Citation in format AMSBIB
\Bibitem{BenQui16}
\by Y.~Benoist, J.-F.~Quint
\paper Central limit theorem on hyperbolic groups
\jour Izv. Math.
\yr 2016
\vol 80
\issue 1
\pages 3--23
\mathnet{http://mi.mathnet.ru/eng/im8306}
\crossref{https://doi.org/10.1070/IM8306}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3462675}
\zmath{https://zbmath.org/?q=an:06589634}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80....3B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000375460600001}
\elib{https://elibrary.ru/item.asp?id=25707522}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969262579}
Linking options:
  • https://www.mathnet.ru/eng/im8306
  • https://doi.org/10.1070/IM8306
  • https://www.mathnet.ru/eng/im/v80/i1/p5
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025