Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2017, Volume 81, Issue 1, Pages 91–98
DOI: https://doi.org/10.1070/IM8387
(Mi im8387)
 

This article is cited in 2 scientific papers (total in 2 papers)

On special Lie algebras having a faithful module with Krull dimension

O. A. Pikhtilkova, S. A. Pikhtilkov

Orenburg State University, Faculty of Mathematics
References:
Abstract: For special Lie algebras we prove an analogue of Markov's theorem on $\mathrm{PI}$-algebras having a faithful module with Krull dimension: the solubility of the prime radical. We give an example of a semiprime Lie algebra that has a faithful module with Krull dimension but cannot be represented as a subdirect product of finitely many prime Lie algebras. We prove a criterion for a semiprime Lie algebra to be representable as such a subdirect product.
Keywords: special Lie algebra, prime radical of a Lie algebra, faithful module with Krull dimension.
Received: 09.04.2015
Revised: 16.09.2015
Bibliographic databases:
Document Type: Article
UDC: 512.554.34
MSC: 17B05, 17B30, 17B60
Language: English
Original paper language: Russian
Citation: O. A. Pikhtilkova, S. A. Pikhtilkov, “On special Lie algebras having a faithful module with Krull dimension”, Izv. Math., 81:1 (2017), 91–98
Citation in format AMSBIB
\Bibitem{PikPik17}
\by O.~A.~Pikhtilkova, S.~A.~Pikhtilkov
\paper On special Lie algebras having a~faithful module with Krull dimension
\jour Izv. Math.
\yr 2017
\vol 81
\issue 1
\pages 91--98
\mathnet{http://mi.mathnet.ru/eng/im8387}
\crossref{https://doi.org/10.1070/IM8387}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3608724}
\zmath{https://zbmath.org/?q=an:1418.17018}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017IzMat..81...91P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000397064700003}
\elib{https://elibrary.ru/item.asp?id=28172113}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85016601970}
Linking options:
  • https://www.mathnet.ru/eng/im8387
  • https://doi.org/10.1070/IM8387
  • https://www.mathnet.ru/eng/im/v81/i1/p93
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025