Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 4, Pages 837–859
DOI: https://doi.org/10.1070/IM8695
(Mi im8695)
 

This article is cited in 22 scientific papers (total in 22 papers)

Continuous selections for metric projection operators and for their generalizations

I. G. Tsar'kov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We study conditions on sets in asymmetric spaces under which there are continuous $\varepsilon$-selections or continuous selections for the metric projection. In particular, we give an affirmative answer to Brown's question on the existence of continuous selections for lower semicontinuous metric projections in polyhedral spaces.
Keywords: metric projection, continuous $\varepsilon$-selection, asymmetric spaces, polyhedral spaces.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00295-a
This paper was written with the financial support of the Russian Foundation for Basic Research (grant no. 16-01-00295-a).
Received: 27.05.2017
Bibliographic databases:
Document Type: Article
UDC: 517.982.256
MSC: 54C65, 46B20, 54E25
Language: English
Original paper language: Russian
Citation: I. G. Tsar'kov, “Continuous selections for metric projection operators and for their generalizations”, Izv. Math., 82:4 (2018), 837–859
Citation in format AMSBIB
\Bibitem{Tsa18}
\by I.~G.~Tsar'kov
\paper Continuous selections for metric projection operators and for their generalizations
\jour Izv. Math.
\yr 2018
\vol 82
\issue 4
\pages 837--859
\mathnet{http://mi.mathnet.ru/eng/im8695}
\crossref{https://doi.org/10.1070/IM8695}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3833477}
\zmath{https://zbmath.org/?q=an:1410.46007}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82..837T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000443002900006}
\elib{https://elibrary.ru/item.asp?id=35276432}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85053151114}
Linking options:
  • https://www.mathnet.ru/eng/im8695
  • https://doi.org/10.1070/IM8695
  • https://www.mathnet.ru/eng/im/v82/i4/p199
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025