Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1994, Volume 42, Issue 3, Pages 621–629
DOI: https://doi.org/10.1070/IM1994v042n03ABEH001549
(Mi im876)
 

This article is cited in 1 scientific paper (total in 1 paper)

Topological proofs of Keller's theorem and an equivariant version of it

S. M. Ageev
References:
Abstract: The known proofs of Keller's theorem that any infinite-dimensional compact convex set in Hilbert space is homeomorphic to the Hilbert cube are analytic. Here a topological proof of this theorem is given. A new approach to the old theorem leads to a proof of an equivariant version of Keller's theorem.
Received: 20.03.1992
Bibliographic databases:
UDC: 515
MSC: 46C05, 46A55
Language: English
Original paper language: Russian
Citation: S. M. Ageev, “Topological proofs of Keller's theorem and an equivariant version of it”, Russian Acad. Sci. Izv. Math., 42:3 (1994), 621–629
Citation in format AMSBIB
\Bibitem{Age93}
\by S.~M.~Ageev
\paper Topological proofs of Keller's theorem and an equivariant version of it
\jour Russian Acad. Sci. Izv. Math.
\yr 1994
\vol 42
\issue 3
\pages 621--629
\mathnet{http://mi.mathnet.ru/eng/im876}
\crossref{https://doi.org/10.1070/IM1994v042n03ABEH001549}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1243348}
\zmath{https://zbmath.org/?q=an:0822.46020}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1994IzMat..42..621A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PE74800008}
Linking options:
  • https://www.mathnet.ru/eng/im876
  • https://doi.org/10.1070/IM1994v042n03ABEH001549
  • https://www.mathnet.ru/eng/im/v57/i3/p213
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:458
    Russian version PDF:148
    English version PDF:34
    References:81
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025