Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 5, Pages 909–931
DOI: https://doi.org/10.1070/IM8805
(Mi im8805)
 

This article is cited in 12 scientific papers (total in 12 papers)

Conformally invariant inequalities in domains in Euclidean space

F. G. Avkhadiev

Kazan (Volga Region) Federal University
References:
Abstract: We study conformally invariant integral inequalities for real-valued functions defined on domains $\Omega$ in $n$-dimensional Euclidean space. The domains considered are of hyperbolic type, that is, they admit a hyperbolic radius $R=R(x, \Omega)$ satisfying the Liouville non-linear differential equation and vanishing on the boundary of the domain. We prove several inequalities which hold for all smooth compactly supported functions $u$ defined on a given domain of hyperbolic type. Here are two of them:
\begin{gather*} \int|\nabla u|^2R^{2-n}\, dx \geqslant n (n-2)\int|u|^2R^{-n}\, dx, \\ \int|(\nabla u, \nabla R)|^p R^{p-s}\, dx\geqslant \frac{2^pn^p}{p^p}\int|u|^pR^{-s}\, dx, \end{gather*}
where $n\geqslant 2$, $1\leqslant p< \infty$ and $1+n/2 \leqslant s <\infty$. We also study the relations between Euclidean and hyperbolic characteristics of domains.
Keywords: Hardy-type inequality, hyperbolic radius, Liouville equation, Poincaré metric.
Funding agency Grant number
Russian Science Foundation 18-11-00115
This work is supported by the Russian Science Foundation under grant no. 18-11-00115.
Received: 03.05.2018
Revised: 15.09.2018
Bibliographic databases:
Document Type: Article
UDC: 517.518.23+517.956.2+514.13
MSC: Primary 26E10; Secondary 46E35, 53A30
Language: English
Original paper language: Russian
Citation: F. G. Avkhadiev, “Conformally invariant inequalities in domains in Euclidean space”, Izv. Math., 83:5 (2019), 909–931
Citation in format AMSBIB
\Bibitem{Avk19}
\by F.~G.~Avkhadiev
\paper Conformally invariant inequalities in domains in Euclidean space
\jour Izv. Math.
\yr 2019
\vol 83
\issue 5
\pages 909--931
\mathnet{http://mi.mathnet.ru/eng/im8805}
\crossref{https://doi.org/10.1070/IM8805}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4017542}
\zmath{https://zbmath.org/?q=an:1435.35014}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83..909A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000510719200001}
\elib{https://elibrary.ru/item.asp?id=43209704}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073699295}
Linking options:
  • https://www.mathnet.ru/eng/im8805
  • https://doi.org/10.1070/IM8805
  • https://www.mathnet.ru/eng/im/v83/i5/p3
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:803
    Russian version PDF:121
    English version PDF:78
    References:91
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025