Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2022, Volume 86, Issue 2, Pages 252–274
DOI: https://doi.org/10.1070/IM9115
(Mi im9115)
 

Foundations of Lie theory for $\mathcal E$-structures and some of its applications

V. V. Gorbatsevich
References:
Abstract: We construct an analogue of classical Lie theory in the case of Lie groups and Lie algebras defined over the algebra of dual numbers. As an application, we study approximate symmetries of differential equations and construct analogues of Hjelmslev's natural geometry.
Keywords: dual numbers, Lie theory, Lie theorems, approximate symmetries of differential equations, Hjelmslev's natural geometry.
Received: 01.10.2020
Revised: 15.01.2021
Published: 18.05.2022
Bibliographic databases:
Document Type: Article
UDC: 512.816.5
MSC: 17B05, 30G35, 53C15
Language: English
Original paper language: Russian
Citation: V. V. Gorbatsevich, “Foundations of Lie theory for $\mathcal E$-structures and some of its applications”, Izv. Math., 86:2 (2022), 252–274
Citation in format AMSBIB
\Bibitem{Gor22}
\by V.~V.~Gorbatsevich
\paper Foundations of Lie theory for~$\mathcal E$-structures and some of its applications
\jour Izv. Math.
\yr 2022
\vol 86
\issue 2
\pages 252--274
\mathnet{http://mi.mathnet.ru/eng/im9115}
\crossref{https://doi.org/10.1070/IM9115}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4461234}
\zmath{https://zbmath.org/?q=an:1534.53011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022IzMat..86..252G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000797187300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85130984890}
Linking options:
  • https://www.mathnet.ru/eng/im9115
  • https://doi.org/10.1070/IM9115
  • https://www.mathnet.ru/eng/im/v86/i2/p34
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025