Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2025, Volume 89, Issue 4, Pages 862–869
DOI: https://doi.org/10.4213/im9292e
(Mi im9292)
 

A further sufficient condition for the determinantal conjecture

Yaroslav N. Shitov
References:
Abstract: Let $A$, $B$ be $n\times n$ normal matrices with eigenvalues $(a_1,\dots,a_n)$, $(b_1,\dots,b_n)$, respectively. We show that $\det(A+B)$ lies in the convex hull of
$$ \bigcup_{\psi\in\mathcal{S}_n}\biggl\{\prod_{i=1}^n(a_i+b_{\psi_i})\biggr\} $$
if all eigenvalues of $A$, $B$ are real, except for three eigenvalues of $B$.
Keywords: normal matrices, eigenvalues, determinantal conjecture.
Received: 21.11.2021
Published: 25.08.2025
Bibliographic databases:
Document Type: Article
UDC: 512.643.5
MSC: 15A18, 15B57
Language: English
Original paper language: English

§ 1. Introduction

The determinantal conjecture of Marcus [17] and de Oliveira [10] is a well-known problem in theory of matrices. This conjecture states that, for any pair $(A,\,B)$ of $n\times n$ normal matrices over $\mathbb C$ and with the spectra $\sigma(A)=(a_1,\dots,a_n)$ and $\sigma(B)=(b_1,\dots,b_n)$,

$$ \begin{equation} \det(A+B)\ \text{ lies in the convex hull of } \ \bigcup_{\psi\in\mathcal{S}_n} \biggl\{\prod_{i=1}^n(a_i+b_{\psi_i})\biggr\}, \end{equation} \tag{1.1} $$
where $\mathcal{S}_n$ is the family of all permutations $\psi\colon i\to\psi_i$ of the set $\{1,\dots, n\}$.

There has been a line of publications [1]–[9], [11], [14]–[16], [18], [19], [22] showing different conditions on $\sigma(A)$, $\sigma(B)$ to be sufficient for the determinantal conjecture. According to the survey [13], the best known results towards this direction include the validity of the conjecture in the following cases:

The latest of these results dates back to 2007, so the progress in this direction seems to have stuck for almost fifteen years [13], [21]. In this paper, we break this barrier and significantly improve one of the above mentioned conditions.

Theorem 1. Let $A$ and $B$ be $n\times n$ normal matrices with eigenvalues $(a_1,\dots,a_n)$ and $(b_1,\dots,b_n)$, respectively. If $a_1,\dots,a_n\in\mathbb{R}$ and, additionally, $b_j\in\mathbb{R}$ for at least $n-3$ indices $j\in\{1,\dots,n\}$, then condition (1.1) is satisfied.

This improves the result of Kovačec [15] of 1999, who confirmed the conjecture in case when, instead of three eigenvalues of $B$ as in the current paper, just one such eigenvalue is not required to be real, and an older result of Fiedler [11] of 1970, who proved (1.1) for normal matrices $A$, $B$ with all real eigenvalues.

Our approach is algebraic, which is in contrast to many papers that use non-trivial tools in analysis [2], [3], [8], [9]. A particular idea that we believe is novel for the study of the determinantal conjecture is the use of Cauchy’s interlace theorem for minors of a Hermitian matrix, see [20] for a detailed discussion and history and [12] for a recent short proof. We are ready to proceed with the proof, which appears as a combination of Cauchy’s interlace theorem with another, already quite standard, fact that the Möbius transformations preserve the property of matrices to satisfy or not satisfy the assertion of the conjecture [2], [9], [13], [16].

In the forthcoming § 2, we specify our notation and give formulations of several previously known statements. In § 3, we present the core of our proof.

§ 2. Preliminaries

We begin with some standard notation.

Definition 2. If $A$ is an $n\times n$ matrix with complex entries, we define $\sigma(A)$ as the multiset $(a_1,\dots,a_n)$ consistsing of the eigenvalues of $A$. Of course, we declare that an eigenvalue of multiplicity $k$ appears $k$ times in $\sigma(A)$.

Definition 3. For two multisets $a=(a_1,\dots, a_n)$ and $b=(b_1,\dots,b_n)$ with complex elements, we define $\Delta(a,b)$ as the convex hull of

$$ \begin{equation*} \bigcup_{\psi\in\mathcal{S}_n}\biggl\{\prod_{i=1}^n(a_i+b_{\psi_i})\biggr\}, \end{equation*} \notag $$
where $\mathcal{S}_n$ is the family of all permutations $\psi\colon i\to\psi_i$ of the set $\{1,\dots, n\}$.

Remark 4. Since the definition of $\Delta(a,b)$ corresponds to the convex hull in (1.1), the determinantal conjecture can be stated simply as

$$ \begin{equation} \det(A+B)\in\Delta(\sigma(A),\sigma(B)) \end{equation} \tag{2.1} $$
for all normal matrices $A$, $B$.

As explained in the introduction, our proof covers the case when $A$ is Hermitian, and $B$ has at most three non-real eigenvalues. Since we can find a unitary matrix $U$ such that $UBU^*$ is diagonal, and since the transformation $X\to UXU^*$ preserves the determinant, we can assume without loss of generality that $B$ is diagonal.

Definition 5. For all integers $m, k$ satisfying $m\geqslant k\geqslant 3$, we define $\mathcal{A}(m,k)$ as the set of all pairs $(A,B)$ consisting of $m\times m$ matrices in which $A$ is Hermitian, $B$ is diagonal, and $B$ has real numbers at the positions $(1,1),\dots,(m-k,m-k)$ and arbitrary complex numbers at all other diagonal positions.

It is easy to see that property (2.1) is preserved by taking limits, so one can restrict to generic matrices when proving the determinantal conjecture. Therefore, we need to adopt some language to deal with generic matrices.

Definition 6. Let $\mathcal{F}$ be a subfield of $\mathbb{R}$, and let $u$ be a family of real numbers. We write $\mathcal{F}(u)$ to denote the smallest subfield of $\mathbb{R}$ containing both $\mathcal{F}$ and $u$.

Definition 7. If $M_1,\dots,M_k$ are complex matrices, we define $\mathcal{F}(M_1,\dots,M_k):=\mathcal{F}(\mu)$, where $\mu$ is the set consisting of all the real and imaginary parts of any entry of any matrix in $(M_1,\dots,M_k)$. We write

$$ \begin{equation} \operatorname{trdeg}_\mathcal{F}(M_1,\dots,M_k) \end{equation} \tag{2.2} $$
to denote the transcendence degree of $\mathcal{F}(M_1,\dots,M_k)$ over $\mathcal{F}$. If $\mathcal{F}=\mathbb{Q}$, then we simply write $\operatorname{trdeg}(M_1,\dots,M_k)$ instead of (2.2).

Definition 8. A pair $(A, B)\in\mathcal{A}(m,k)$ is called generic if

$$ \begin{equation} \operatorname{trdeg}(A, B)=m^2+m+k. \end{equation} \tag{2.3} $$

Remark 9. On the right-hand side of (2.3), the matrix $A$ gives the $m^2$ summand, and $B$ gives the remaining $m+k$ degrees, of which $m-k$ correspond to the real diagonal entries, and the remaining $2k$ come from the other $k$ diagonal entries.

We proceed with several well-known results.

Theorem 10 (see [1], [10]). The determinantal conjecture is valid for $n\leqslant 3$.

Theorem 11 (Cauchy’s interlace theorem [12], [20]). Let $A$ be an $n\times n$ Hermitian matrix, and let $A'$ be the matrix obtained from $A$ by removing its first row and first column. If $\sigma(A)=(a_1,\dots,a_n)$ and $\sigma(A')=(\alpha_1,\dots,\alpha_{n-1})$ with

$$ \begin{equation*} a_1\leqslant \dots\leqslant a_n\quad \textit{and}\quad \alpha_1\leqslant\dots\leqslant\alpha_{n-1}, \end{equation*} \notag $$
then $\alpha_i\in[a_i,a_{i+1}]$ for all $i\in\{1,\dots,n-1\}$.

Theorem 12 (see [2], [13], [16]). Let $A$, $B$ be $n\times n$ normal matrices, and let $c\in\mathbb{C}$ be eigenvalue of neither $A$ nor $-B$. Then the matrices

$$ \begin{equation*} A'=(A-cI)^{-1}\quad\textit{and}\quad B'=(B+cI)^{-1} \end{equation*} \notag $$
satisfy $\det(A+B)\in\Delta(\sigma(A),\sigma(B))$ if and only if $\det(A'+B')\in\Delta(\sigma(A'),\sigma(B'))$.

§ 3. The proof

We begin the core of our argument with three simple observations.

Observation 13 (see [8], [13]). If $(A_t)$, $(B_t)$ are two sequences of $n\times n$ complex matrices that satisfy $A_t\to A$, $B_t\to B$ as $t\to+\infty$, and the condition

$$ \begin{equation*} \det(A_t+B_t)\in\Delta(\sigma(A_t),\sigma(B_t)) \end{equation*} \notag $$
holds for all $t$, then $\det(A+B)\in\Delta(\sigma(A),\sigma(B))$.

This result is a consequence of the continuity of $\det$ and $\Delta$.

Observation 14. If $X$ is a non-singular matrix with complex entries, then

$$ \begin{equation} \operatorname{trdeg}_\mathcal{F}(X)=\operatorname{trdeg}_\mathcal{F}(X^{-1}) \end{equation} \tag{3.1} $$
for any subfield $\mathcal{F}\subset\mathbb{R}$.

Proof. We have $ \mathcal{F}(X^{-1})\subseteq\mathcal{F}(X)$, as the real and imaginary parts in $X^{-1}$ belong to $\mathcal{F}(X)$, and the opposite inclusion follows because $(X^{-1})^{-1}=X$

Lemma 15. Let $(A, B)\in\mathcal{A}(m,k)$ be generic. If $\det(A+B)\in\Delta(\sigma(A),\sigma(B))$, then $\det(A+B)$ is an interior point of $\Delta(\sigma(A),\sigma(B))$.

Proof. Assume that $a_1,\dots,a_m$ and $b_1,\dots,b_m$ are the eigenvalues of $A$ and $B$, respectively. If the lemma is false, then $\det(A+B)$ lies on an edge of the polygon $\Delta(\sigma(A),\sigma(B))$, and, for some permutation $\pi\colon \{1,\dots,m\}\to\{1,\dots,m\}$, the condition
$$ \begin{equation} \frac{\det(U\operatorname{diag}(a_1,\dots, a_m)U^*+B)-(a_1+b_{\pi_1})\cdots(a_m+b_{\pi _ m})}{(a_1+b_1)\cdots(a_m+b_m)-(a_1+b_{\pi_1})\cdots(a_m+b_{\pi _m})}\in\mathbb{R} \end{equation} \tag{3.2} $$
holds for generic unitary matrix $U$, which implies (3.2) for all unitary matrices in an open neighbourhood of $U$ and leads to a contradiction.

The following is some notation specific for our argument.

Definition 16. Let $a=(a_1,\dots,a_n)$, $\beta=(\beta_1,\dots,\beta_{n-1})$ be two multisets of $n$ and $n-1$ complex numbers, respectively. We define $\overline{\Delta}(a,\beta)$ as the convex hull of

$$ \begin{equation*} \bigcup_{\psi}\biggl\{\prod_{i=1}^{n-1}(a_{\psi_i}+\beta_i)\biggr\}, \end{equation*} \notag $$
where $\psi\colon i\to\psi_i$ runs over all injective mappings $\{1,\dots,n-1\}\to\{1,\dots,n\}$.

Lemma 17. For $n\geqslant 2$, consider three multisets

$$ \begin{equation*} a=(a_1,\dots,a_n),\quad \alpha=(\alpha_1,\dots,\alpha_{n-1}),\quad \beta=(\beta_1,\dots,\beta_{n-1}), \end{equation*} \notag $$
where $\beta$ consists of complex numbers, and $a$, $\alpha$ are real and satisfy
$$ \begin{equation*} a_1\leqslant\alpha_1\leqslant a_2\leqslant\dots\leqslant a_{n-1}\leqslant\alpha_{n-1}\leqslant a_n. \end{equation*} \notag $$
Then $\Delta(\alpha,\beta)\subseteq\overline{\Delta}(a,\beta)$.

Proof. If $n=2$, then $\overline{\Delta}(a,\beta)$ is the segment between $a_1+\beta_1$ and $a_2+\beta_1$, and $\Delta(\alpha,\beta)$ is the single point $\alpha_1+\beta_1$, and the desired statement that
$$ \begin{equation*} \alpha_1+\beta_1\quad\text{belongs to the convex hull of } \ \{a_1+\beta_1,a_2+\beta_1\} \end{equation*} \notag $$
follows by the interlace inequalities. This covers the case $n=2$, and so we can assume $n>2$ and proceed by induction. In order to prove the desired statement, we need to check that all vertices of $\Delta(\alpha,\beta)$ belong to $\overline{\Delta}(a,\beta)$, and hence, after an appropriate relabeling of $\beta$, it is sufficient to check that
$$ \begin{equation} (\alpha_1+\beta_1)\cdots(\alpha_{n-2}+\beta_{n-2})\cdot(\alpha_{n-1}+\beta_{n-1})\in\overline{\Delta}(a,\beta). \end{equation} \tag{3.3} $$
In view of the inductive assumption, the point $ (\alpha_1+\beta_1)\cdots(\alpha_{n-2}+\beta_{n-2}) $ belongs to both $\overline{\Delta}(a', \beta')$ and $\overline{\Delta}(a'', \beta')$, where $a'$ and $a''$ are obtained from $a$ by removing the $a_{n-1}$ and $a_n$ terms, respectively, and, similarly, $\beta'=(\beta_1,\dots,\beta_{n-2})$. Therefore, the points $ (\alpha_1+\beta_1)\cdots(\alpha_{n-2}+\beta_{n-2})\cdot(a_{n-1}+\beta_{n-1}) $ and $ (\alpha_1+\beta_1)\cdots(\alpha_{n-2}+\beta_{n-2})\cdot(a_n+\beta_{n-1}) $ belong to $\overline{\Delta}(a,\beta)$, and hence the inequalities $a_{n-1}\leqslant\alpha_{n-1}\leqslant a_n$ imply (3.3).

The next result is immediate from Theorem 11 and Lemma 17.

Corollary 18. Let $A$ be a Hermitian $n\times n$ matrix, let $A'$ be its principal $(n-1)\times(n-1)$ submatrix, and let $\beta$ be a multiset of $n-1$ complex numbers. Then

$$ \begin{equation*} \Delta(\sigma(A'),\beta)\subseteq\overline{\Delta}(\sigma(A),\beta). \end{equation*} \notag $$

We are now ready to proceed with the main technical contribution of this paper.

Theorem 19. Let $m$ and $k$ be integers such that $m\geqslant k\geqslant 3$. If condition (2.1) holds for every pair $(A,B)\in\mathcal{A}(m,k)$, then condition (2.1) holds for every pair $(A,B)\in\mathcal{A}(n,k)$ as well, for all integers $n\geqslant m$.

Proof. We work by induction on $n$ starting from $n=m$, which corresponds to the assumption of the theorem. In the rest of this proof, we assume that $n>m$, and our aim is to complete the induction step. According to Observation 13, we can assume that $(A,B)$ is a generic pair in $\mathcal{A}(n,k)$. We recall that $A$ is a Hermitian matrix, and $B$ is a diagonal matrix with real numbers $b_1,\dots,b_{n-k}$ at the corresponding positions $(1,1), \dots, (n-k,n-k)$, and with complex numbers $b_{n-k+1},\dots,b_n$ at the remaining diagonal entries.

Now we use the Möbius transformations and define

$$ \begin{equation*} \overline{A_\varepsilon}=(A+(b_1-\varepsilon)I)^{-1}\quad \text{and} \quad \overline{B_\varepsilon}=(B-(b_1-\varepsilon)I)^{-1} \end{equation*} \notag $$
for all appropriate $\varepsilon$. By Theorem 12, the desired assertion follows if we prove
$$ \begin{equation} \det(\overline{A_\varepsilon}+\overline{B_\varepsilon})\in\Delta \bigl(\sigma(\overline{A_\varepsilon}),\sigma(\overline{B_\varepsilon})\bigr) \end{equation} \tag{3.4} $$
with a sufficiently small real $\varepsilon>0$. Towards this end, we take
$$ \begin{equation*} \overline{A}=(A+b_1I)^{-1} \end{equation*} \notag $$
which gives
$$ \begin{equation} \overline{A_\varepsilon}=\overline{A}+\delta'(\varepsilon),\qquad \overline{B_\varepsilon}=\operatorname{diag}\biggl(\frac1{\varepsilon},\frac1{b_2-b_1}, \dots, \frac1{b_n-b_1} \biggr) +\delta''(\varepsilon), \end{equation} \tag{3.5} $$
where $\delta'/\varepsilon$ and $\delta''/\varepsilon$ remain bounded as $\varepsilon\to 0$. We take $\overline{a}:=\sigma(\overline{A})$ and
$$ \begin{equation*} \beta_j:=\frac{1}{b_j-b_1}\quad\text{for all } \ j\in\{2,\dots,n\}, \end{equation*} \notag $$
and also
$$ \begin{equation} \overline{b}=\biggl(\frac1{\varepsilon},\beta_2,\dots,\beta_n\biggr),\qquad \beta=(\beta_2,\dots,\beta_n). \end{equation} \tag{3.6} $$
In view of formula (3.5), the vertices of
$$ \begin{equation} \Delta\bigl(\sigma(\overline{A_\varepsilon}),\sigma(\overline{B_\varepsilon})\bigr) \end{equation} \tag{3.7} $$
differ from the corresponding points in $\Delta(\overline{a},\overline{b})$ by quantities that remain bounded as $\varepsilon\to0$, and hence, since the coordinates in $\overline{a}$ and $\beta$ in (3.6) do not depend on $\varepsilon$, every vertex of $\overline{\Delta}(\overline{a},\beta)/\varepsilon$ lies at distance at most $C$ of a vertex of polygon (3.7), where $C$ is some positive real number independent of $\varepsilon$. Therefore,
$$ \begin{equation} \text{the $C$-contraction of }\frac{1}{\varepsilon}\cdot\overline{\Delta}(\overline{a},\beta)\text{ is a subset of } \Delta\bigl(\sigma(\overline{A_\varepsilon}),\sigma(\overline{B_\varepsilon})\bigr) \end{equation} \tag{3.8} $$
for all sufficiently small $\varepsilon>0$, where the $C$-contraction of a polygon $S\subset\mathbb{C}$ is the set of all points in $S$ that lie at least at the distance $C$ from the boundary of $S$.

As we can see, condition (3.8) describes the right-hand side of the desired formula (3.4). Concerning the left-hand side, equation (3.5) implies

$$ \begin{equation} \biggl|\det(\overline{A_\varepsilon}+\overline{B_\varepsilon}) -\frac{1}{\varepsilon}\cdot\det(\widetilde{A}+\widetilde{B})\biggr|<C' \end{equation} \tag{3.9} $$
for all $\varepsilon>0$, where $\widetilde{A}$, $\widetilde{B}$ are the matrices obtained from $\overline{A}$, $\overline{B}$ by removing their corresponding first rows and first columns, and $C'$ is some positive real number independent of the choice of $\varepsilon$. Using the inductive assumption, we get that
$$ \begin{equation} \det(\widetilde{A}+\widetilde{B})\in\Delta\bigl(\sigma(\widetilde{A}),\sigma(\widetilde{B})\bigr). \end{equation} \tag{3.10} $$
Since the choice of $(A,B)$ is generic, the field $\mathbb{Q}(A+b_1I)$ has full transcendence degree, equal to $n^2$, over $\mathbb{Q}(b_2,\dots,b_n)$. This implies, according to Observation 14, that $\mathbb{Q}(\overline{A})$ has full transcendence degree over $\mathbb{Q}(b_2,\dots,b_n)$ as well, and hence the pair $(\widetilde{A}, \widetilde{B})$ is generic. This allows us to apply Lemma 15 on condition (3.10), and, finally, we conclude that $\det(\widetilde{A}+\widetilde{B})$ is an interior point of $\Delta(\sigma(\widetilde{A}),\sigma(\widetilde{B}))$.

Further, we use Corollary 18 to see that $\Delta(\sigma(\widetilde{A}),\beta)\subseteq\overline{\Delta}(\overline{a},\beta)$, and hence $\det(\widetilde{A}+ \widetilde{B})$ is an interior point of $\overline{\Delta}(\overline{a},\beta)$ as well. Since neither $\det(\widetilde{A}+\widetilde{B})$ nor $\overline{\Delta}(\overline{a},\beta)$ depend on $\varepsilon$, there exists some positive real number $d>0$ independent of $\varepsilon$ such that $\det(\widetilde{A}+\widetilde{B})$ belongs to the $d$-contraction of $\overline{\Delta}(\overline{a},\beta)$, and hence

$$ \begin{equation} \frac{1}{\varepsilon}\cdot\det(\widetilde{A}+\widetilde{B})\ \text{ belongs to the } \frac{d}{\varepsilon}\text{-contraction of } \ \frac{1}{\varepsilon}\cdot\overline{\Delta}(\overline{a},\beta). \end{equation} \tag{3.11} $$
A comparison of (3.9) and (3.11) allows us to choose $\varepsilon$ so that
$$ \begin{equation} \det(\overline{A_\varepsilon}+\overline{B_\varepsilon})\ \text{ belongs to the $C$-contraction of } \ \frac{1}{\varepsilon}\cdot\overline{\Delta}(\overline{a},\beta) \end{equation} \tag{3.12} $$
for arbitrary $C$ fixed in advance, and now conditions (3.8) and (3.12) show (3.4). Theorem 19 is proved.

We know from Theorem 10 that condition (2.1) holds in $\mathcal{A}(3,3)$. Therefore, as a corollary of Theorem 19, we get the result announced in the abstract.

Proof of Theorem 1. It is well known that $B$ can be taken diagonal without loss of generality. In fact, we can find a unitary matrix $U$ such that $UBU^*$ is diagonal, and then we can restrict to this case because the transformation $X\to UXU^*$ preserves the determinant. Therefore, it suffices to prove (2.1) for all pairs $(A,B)\in\mathcal{A}(n,3)$, which follows by an immediate application of Theorems 10 and 19.

Bibliography

1. N. Bebiano, J. K. Merikoski, and J. da Providência, “On a conjecture of G. N. de Oliveira on determinants”, Linear Multilinear Algebra, 20:2 (1987), 167–170  crossref  mathscinet  zmath
2. N. Bebiano and J. da Providência, “Some remarks on a conjecture of de Oliveira”, Linear Algebra Appl., 102 (1988), 241–246  crossref  mathscinet  zmath
3. N. Bebiano and J. F. Queiró, “The determinant of the sum of two normal matrices with prescribed eigenvalues”, Linear Algebra Appl., 71 (1985), 23–28  crossref  mathscinet  zmath
4. N. Bebiano and G. Soares, “Three observations on the determinantal range”, Linear Algebra Appl., 401 (2005), 211–220  crossref  mathscinet  zmath
5. N. Bebiano, Yiu Tung Poon, and J. da Providência, “On $C$-$\det$ spectral and $C$-$\det$-convex matrices”, Linear Multilinear Algebra, 23:4 (1988), 343–351  crossref  mathscinet  zmath
6. N. Bebiano, A. Kovačec, and J. da Providência, “The validity of the Marcus–de Oliveira conjecture for essentially Hermitian matrices”, Linear Algebra Appl., 197/198 (1994), 411–427  crossref  mathscinet  zmath
7. J. da Providência and N. Bebiano, “Matrices satisfying a conjecture of G. N. de Oliveira on determinants”, Linear Algebra Appl., 78 (1986), 187–198  crossref  mathscinet  zmath
8. S. W. Drury, “Essentially Hermitian matrices revisited”, Electron. J. Linear Algebra, 15 (2006), 285–296  crossref  mathscinet  zmath
9. S. W. Drury, “OMC for scalar multiples of unitaries”, Linear Algebra Appl., 422:1 (2007), 318–325  crossref  mathscinet  zmath
10. G. de Oliveira, “Normal matrices (research problem)”, Linear Multilinear Algebra, 12:2 (1982), 153–154  crossref
11. M. Fiedler, “Bounds for the determinant of the sum of Hermitian matrices”, Proc. Amer. Math. Soc., 30 (1971), 27–31  crossref  mathscinet  zmath
12. S. Fisk, “A very short proof of Cauchy's interlace theorem”, Amer. Math. Monthly, 112:2 (2005), 118
13. Huajun Huang, “A survey of the Marcus–de Oliveira бonjecture”, Advances in algebra, SRAC 2017 (Mobile, AL, 2017), Springer Proc. Math. Stat., 277, Springer, Cham, 2019, 169–181  crossref  mathscinet  zmath
14. A. Kovačec, “On a conjecture of Marcus and de Oliveira”, Linear Algebra Appl., 201 (1994), 91–97  crossref  mathscinet  zmath
15. A. Kovačec, “The Marcus–de Oliveira conjecture, bilinear forms, and cones”, Linear Algebra Appl., 289:1-3 (1999), 243–259  crossref  mathscinet  zmath
16. Chi-Kwong Li, Yiu-Tung Poon, and Nung-Sing Sze, “Ranks and determinants of the sum of matrices from unitary orbits”, Linear Multilinear Algebra, 56:1-2 (2008), 105–130  crossref  mathscinet  zmath
17. M. Marcus, “Derivations, Plücker relations, and the numerical range”, Indiana Univ. Math. J., 22:12 (1972/73), 1137–1149  crossref  mathscinet  zmath
18. J. K. Merikoski and A. Virtanen, “Some notes on de Oliveira's determinantal conjecture”, Linear Algebra Appl., 121 (1989), 345–352  crossref  mathscinet  zmath
19. J. K. Merikoski and A. Virtanen, “Some further notes on the Marcus–de Oliveira determinantal conjecture”, Linear Algebra Appl., 187 (1993), 259–262  crossref  mathscinet  zmath
20. Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, London Math. Soc. Monogr. (N.S.), 26, The Clarendon Press, Oxford Univ. Press, Oxford, 2002  mathscinet  zmath
21. K. Rodtes, “A class of normal dilation matrices affirming the Marcus–de Oliveira conjecture”, Oper. Matrices, 15:1 (2021), 127–130  crossref  mathscinet  zmath
22. N. Bebiano and J. P. da Providencia, “Revisiting the Marcus–de Oliveira Conjecture”, Mathematics, 13:5 (2025), 711  crossref

Citation: Yaroslav N. Shitov, “A further sufficient condition for the determinantal conjecture”, Izv. Math., 89:4 (2025), 862–869
Citation in format AMSBIB
\Bibitem{Shi25}
\by Yaroslav~N.~Shitov
\paper A further sufficient condition for the determinantal conjecture
\jour Izv. Math.
\yr 2025
\vol 89
\issue 4
\pages 862--869
\mathnet{http://mi.mathnet.ru/eng/im9292}
\crossref{https://doi.org/10.4213/im9292e}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4949226}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2025IzMat..89..862S}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105014949774}
Linking options:
  • https://www.mathnet.ru/eng/im9292
  • https://doi.org/10.4213/im9292e
  • https://www.mathnet.ru/eng/im/v89/i4/p219
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025