|
This article is cited in 1 scientific paper (total in 1 paper)
On Romanoff's theorem
A. O. Radomskii HSE University, Moscow
Abstract:
Some results related to Romanoff's theorem are obtained.
Keywords:
Euler's totient function, Romanoff's theorem, elliptic curve.
Received: 29.12.2021 Revised: 10.02.2022
Published: 13.08.2023
§ 1. Introduction Let $\varphi$ denote the Euler totient function. It is clear that $1\leqslant \varphi(n)\leqslant n$ for any positive integer $n$. Therefore, if $a_1,\dots, a_{N}$ are positive integers (not necessarily distinct), $s\in \mathbb{N}$, then
$$
\begin{equation*}
\sum_{n=1}^{N} \biggl(\frac{a_{n}}{\varphi(a_{n})}\biggr)^s\geqslant N.
\end{equation*}
\notag
$$
Upper bounds for such sums are of interest. It is well-known that, for any positive integer $s$, there is a positive constant $c(s)$ depending only on $s$ such that
$$
\begin{equation*}
\sum_{n=1}^{N} \biggl(\frac{n}{\varphi (n)}\biggr)^s\leqslant c(s) N
\end{equation*}
\notag
$$
for any positive integer $N$. We prove the following result. Theorem 1.1. Let $0<\alpha <1$ be a real number. Then there is a constant $C(\alpha)>0$ depending only on $\alpha$, such that the following holds. Let $M\geqslant 1$ be a real number, let $a_1,\dots,a_{N}$ be positive integers (not necessarily distinct), $a_{n}\leqslant M$ for all $1\leqslant n \leqslant N$. We define
$$
\begin{equation*}
\omega(d)=\#\{1\leqslant n\leqslant N\colon a_{n}\equiv 0\ (\operatorname{mod} d)\}
\end{equation*}
\notag
$$
for any positive integer $d$. Let $s$ be a positive integer. Then
$$
\begin{equation*}
\sum_{n=1}^{N}\biggl(\frac{a_{n}}{\varphi(a_{n})}\biggr)^s\leqslant (C(\alpha))^s \biggl(N+\sum_{p\leqslant (\ln M)^{\alpha}} \frac{\omega(p)(\ln p)^s}{p}\biggr).
\end{equation*}
\notag
$$
From the proof of Theorem 1.1 it will follow that $C(\alpha)=c/\alpha$, where $c$ is a positive absolute constant. The following result shows that Theorem 1.1 can not be improved in the following sense: the condition $p\leqslant (\ln M)^{\alpha}$ can not be replaced by $p\leqslant (\ln M)^{o(1)}$. Theorem 1.2. Let $\alpha(M)$, $M=1,2,\dots,$ be a sequence of positive real numbers such that $\alpha(M)\to 0$ as $M\to +\infty$ and $(\ln M)^{\alpha(M)}\geqslant 2$ for all $M\geqslant 3$. Then there is a constant $M_0 >0$ depending only on a sequence $\alpha(M)$ such that, for any positive integer $M\geqslant M_0$, there is a non-empty set $A\subset \{1,\dots,M\}$ such that
$$
\begin{equation*}
\#\{n\in A\colon n\equiv 0\ (\operatorname{mod} p)\}=0
\end{equation*}
\notag
$$
for any prime $p\leqslant (\ln M)^{\alpha(M)}$ and
$$
\begin{equation*}
\sum_{n\in A}\frac{n}{\varphi(n)}\geqslant \frac{c}{\alpha(M)}\#A.
\end{equation*}
\notag
$$
Here, $c>0$ is an absolute constant. From Theorem 1.1 we obtain Theorem 1.3. Let $\varepsilon$ be a real number with $0<\varepsilon <1$. Then there is a constant $C(\varepsilon)>0$ depending only on $\varepsilon$such that the following holds. Let $x$ and $z$ be real numbers with $x\geqslant 3$ and $(\ln x)^{\varepsilon} \leqslant z \leqslant x$. Let $k$ be a positive integer, let $a_0,\dots, a_k$ be integers with $|a_i| \leqslant x$ for all $0\leqslant i \leqslant k$ and $a_k \neq 0$. By $\delta:= (a_0,\dots, a_k)$ we denote the greatest common divisor of $a_0,\dots, a_k$. Let
$$
\begin{equation*}
R(n)=a_k n^{k}+a_{k-1}n^{k-1}+\dots+a_0.
\end{equation*}
\notag
$$
Let $s$ be a positive integer. Then
$$
\begin{equation}
\sum_{\substack{-z\leqslant n \leqslant z\\ R(n)\neq 0}} \biggl(\frac{|R(n)|}{\varphi(|R(n)|)}\biggr)^s\leqslant \biggl(C(\varepsilon)\frac{\delta}{\varphi(\delta)}\ln (k+1)\biggr)^ss!\, z.
\end{equation}
\tag{1.1}
$$
Corollary 1.1. Let $k$ be a positive integer, let
$$
\begin{equation*}
R(n)=a_k n^k+a_{k-1}n^{k-1}+\dots+a_0
\end{equation*}
\notag
$$
be a polynomial with integer coefficients, $a_k\neq 0$. Then there is a constant $C(R)>0$ depending only on $R$ such that if $s$ is a positive integer and $x$ is a real number with $x\geqslant 1$, then
$$
\begin{equation*}
\sum_{\substack{-x\leqslant n \leqslant x\\ R(n)\neq 0}} \biggl(\frac{|R(n)|}{\varphi(|R(n)|)}\biggr)^s \leqslant (C(R))^ss!\, x.
\end{equation*}
\notag
$$
Let $\mathcal{L}=\{L_1,\dots,L_k\}$ be a set of $k$ linear functions with integer coefficients
$$
\begin{equation*}
L_{i}(n)=a_i n+b_i,\qquad i=1,\dots, k.
\end{equation*}
\notag
$$
For $L(n)=an+b$, $a, b\in \mathbb{Z}$, we define
$$
\begin{equation*}
\Delta_{L}=|a|\prod_{i=1}^{k}|a b_i - b a_i|.
\end{equation*}
\notag
$$
Modern application of the sieve methods involves the sums
$$
\begin{equation*}
\sum_{(a,b)\in \Omega} \frac{\Delta_{L}}{\varphi(\Delta_{L})}
\end{equation*}
\notag
$$
(see, for example, [1]). Here, $(a,b)$ denotes a vector and $\Omega$ is a finite set in $\mathbb{Z}^2$. The next result follows from Theorem 1.1. Theorem 1.4. Let $0<\varepsilon <1$ be a real number. Then there is a constant $C(\varepsilon)>0$ depending only on $\varepsilon$, such that the following holds. Let $x$ and $z$ be real numbers with $x\geqslant 3$ and $(\ln x)^{\varepsilon} \leqslant z \leqslant x$. Let $a, b_1,\dots, b_k$ be integers with $a\geqslant 1$, $|b_i| \leqslant x$ for all $1\leqslant i \leqslant k$. Let $\mathcal{L}=\{L_1,\dots,L_k\}$ be a set of $k$ linear functions, where $L_{i}(n)=a n+b_i,\ i=1,\dots, k$. For $L(n)=an+b$, $b\in \mathbb{Z}$, we define $\Delta_{L}=a^{k+1}\prod_{i=1}^{k}|b_i - b|$. Let $s$ be a positive integer. Then
$$
\begin{equation}
\sum_{\substack{-z\leqslant b \leqslant z\\ L(n)=an+b \notin \mathcal{L}}} \biggl(\frac{\Delta_{L}}{\varphi(\Delta_L)}\biggr)^s \leqslant \biggl(C(\varepsilon)\frac{a}{\varphi(a)} \ln (k+1) \biggr)^ss!\, z.
\end{equation}
\tag{1.2}
$$
Theorem 1.4 extends one result of Maynard (Lemma 8.1 in [1]), who obtained the same result but with $s=1$ and $x^{1/10} \leqslant z \leqslant x$. Since $a/\varphi(a) \leqslant c\ln\ln (a+2)$, where $c$ is a positive absolute constant, the right-hand side of (1.2) can be replaced by
$$
\begin{equation*}
\bigl(C(\varepsilon)\ln\ln (a+2) \ln (k+1) \bigr)^ss!\, z.
\end{equation*}
\notag
$$
The same remark is also true for (1.1). We recall some facts on elliptic curves (see, for example, Ch. XXV in [2] for more details). An elliptic curve is given by an equation of the form
$$
\begin{equation*}
E\colon y^2 = x^3 + Ax+B,
\end{equation*}
\notag
$$
with one additional condition on the discriminant
$$
\begin{equation*}
\Delta= 4A^3+ 27 B^2
\end{equation*}
\notag
$$
should not vanish. For convenience, we shall generally assume that the coefficients $A$ and $B$ are integers. One of the properties that make an elliptic curve $E$ such a fascinating object is the existence of a composition law that allows us to “add” points to one another. We augment the plane with an idealized point $\mathcal{O}$. This point $\mathcal{O}$ is called the point at infinity. The law of addition extends to the point $\mathcal{O}$ as follows:
$$
\begin{equation*}
P+(-P)=\mathcal{O}\quad \text{and}\quad P+\mathcal{O}=\mathcal{O}+P=P
\end{equation*}
\notag
$$
for all points $P$ on $E$. Given a prime $p$, by $\mathbb{F}_{p}$ we denote the field of classes of residues modulo $p$. We define
$$
\begin{equation*}
E(\mathbb{F}_{p})=\{(x,y)\in {\mathbb{F}}_{p}^2\colon y^2\equiv x^3+Ax+B\ (\operatorname{mod} p)\}\cup\{\mathcal{O}\}.
\end{equation*}
\notag
$$
Repeated addition and negation allows us to “multiply” points of $E$ by an arbitrary integer $m$. This function from $E$ to itself is called the multiplication-by $m$ map:
$$
\begin{equation*}
\phi_{m}\colon E\to E,\qquad \phi_{m}(P)=mP=\operatorname{sign}(m)(P+\dots+P)
\end{equation*}
\notag
$$
(the sum contains $|m|$ terms). By convention, we also define $\phi_{0}(P)=\mathcal{O}$. The multiplication-by-$m$ map is defined by rational functions. The maps $E\to E$, as defined by rational functions and sending $\mathcal{O}$ to $\mathcal{O}$, are called endomorphisms of $E$. For the most elliptic curves (over the field of complex numbers $\mathbb{C}$) the only endomorphisms are the multiplication-by-$m$ maps. The curves that admit additional endomorphisms are said to have complex multiplication. Let $\pi(x)$ denote the number of primes not exceeding $x$. We will prove Theorem 1.5. Let $E$ be an elliptic curve given by the equation
$$
\begin{equation*}
y^2=x^3+Ax+B,
\end{equation*}
\notag
$$
where $A$ and $B$ are integers satisfying $\Delta=4A^3+27B^2\neq 0$. Suppose that $E$ does not have complex multiplication. Let $s$ be a positive integer and $x\geqslant 2$ be a real number. Then
$$
\begin{equation}
\pi(x)\leqslant \sum_{p\leqslant x} \biggl(\frac{\#E(\mathbb{F}_{p})}{\varphi(\#E(\mathbb{F}_{p}))}\biggr)^s \leqslant C(E,s)\pi(x),
\end{equation}
\tag{1.3}
$$
where $C(E,s)>0$ is a constant depending only on $E$ and $s$. Let $\mathbb{P}$ denote the set of all prime numbers. In 1934, Romanoff proved the following result. Romanoff’s theorem (see [3]). Let $a\geqslant 2$ be an integer. Then there is a constant $c(a)>0$ depending only on $a$ such that
$$
\begin{equation*}
\#\{1\leqslant n \leqslant x\colon \text{there are }p\in \mathbb{P}\text{ and } j\in \mathbb{Z}_{\geqslant 0}\text{ such that }p+ a^{j}=n\}\geqslant c(a)x
\end{equation*}
\notag
$$
for any real number $x\geqslant 3$. We will prove the following result. Theorem 1.6. Let $A=\{a_{n}\}_{n=1}^{\infty}$ be a sequence of positive integers (not necessarily distinct) and let
$$
\begin{equation*}
\begin{aligned} \, N_{A}(x)&=\#\{j\in \mathbb{N}\colon a_j \leqslant x\}, \\ \operatorname{ord}_{A}(n)&=\#\{j\in \mathbb{N}\colon a_j=n\},\qquad n\in\mathbb{N}, \\ \rho_{A}(x)&=\max_{n\leqslant x}\operatorname{ord}_{A}(n). \end{aligned}
\end{equation*}
\notag
$$
Suppose that $\operatorname{ord}_{A}(n)<+\infty$ for any positive integer $n$. Suppose also that there are constants $\gamma_{1}>0$, $\gamma_{2}>0$, $\alpha>0$, $x_{0}\geqslant 10$ such that
$$
\begin{equation}
N_{A}(x)>0,
\end{equation}
\tag{1.4}
$$
$$
\begin{equation}
N_{A}\biggl(\frac{x}2\biggr)\geqslant \gamma_1 N_{A}(x),
\end{equation}
\tag{1.5}
$$
$$
\begin{equation}
\sum_{\substack{k\in \mathbb{N}:\\ a_k < x}}\sum_{p\leqslant (\ln x)^{\alpha}} \frac{\#\{j\in\mathbb{N}\colon a_{k}< a_j \leqslant x \textit{ and } a_j\equiv a_k\ (\operatorname{mod} p)\}\ln p}{p}\leqslant \gamma_2 (N_{A}(x))^2
\end{equation}
\tag{1.6}
$$
for any real number $x\geqslant x_0$. Given any positive integer $n$, let
$$
\begin{equation*}
r(n)=\#\{(p,j)\in \mathbb{P} \times\mathbb{N}\colon p+a_j=n\}.
\end{equation*}
\notag
$$
Then there are constants $c_1 = c_{1}(\gamma_{1})>0$ and $c_2=c_{2}(\gamma_1, \gamma_2, \alpha)>0$ depending only on $\gamma_1$ and $\gamma_1$, $\gamma_2$, $\alpha$, respectively, such that
$$
\begin{equation*}
\#\biggl\{1\leqslant n \leqslant x\colon r(n)\geqslant c_{1}\frac{N_{A}(x)}{\ln x}\biggr\} \geqslant c_{2}x\frac{N_{A}(x)}{N_{A}(x)+\rho_{A}(x)\ln x}
\end{equation*}
\notag
$$
for any real number $x\geqslant x_0$. In particular,
$$
\begin{equation*}
\begin{aligned} \, &\#\{1\leqslant n \leqslant x\colon \textit{there are }p\in \mathbb{P} \textit{ and }j\in \mathbb{N}\textit{ such that }p+a_j = n\} \\ &\qquad\geqslant c_{2}x\frac{N_{A}(x)}{N_{A}(x)+\rho_{A}(x)\ln x} \end{aligned}
\end{equation*}
\notag
$$
for any real number $x\geqslant x_0$. We note that Romanoff’s theorem follows from Theorem 1.6. From Theorem 1.6 we obtain Theorem 1.7. Let $k\geqslant 2 $ be an integer, and let
$$
\begin{equation*}
R(n)=a_k n^k+\dots+a_0
\end{equation*}
\notag
$$
be a polynomial with integer coefficients, $a_k>0$. For any positive integer $n$, we put
$$
\begin{equation*}
r(n)=\#\{(p, j)\in \mathbb{P}\times\mathbb{N}\colon p+R(j)=n\}.
\end{equation*}
\notag
$$
Then there are constants $c_1>0$, $c_2>0$, $x_0>0$ depending only on $R$ such that
$$
\begin{equation*}
\#\biggl\{1\leqslant n \leqslant x\colon r(n)\geqslant c_1 \frac{x^{1/k}}{\ln x}\biggr\}\geqslant c_2 x
\end{equation*}
\notag
$$
for any real number $x\geqslant x_0$. Corollary 1.2. Let $k\geqslant 2$ be an integer. For any positive integer $n$, we put
$$
\begin{equation*}
r(n)=\#\{(p,j)\in \mathbb{P}\times\mathbb{N}\colon p+j^k=n\}.
\end{equation*}
\notag
$$
Then there are constants $c_1(k)>0$ and $c_2(k)>0$ depending only on $k$ such that
$$
\begin{equation*}
\#\biggl\{1\leqslant n \leqslant x\colon r(n)\geqslant c_1(k) \frac{x^{1/k}}{\ln x}\biggr\}\geqslant c_2(k) x
\end{equation*}
\notag
$$
for any real number $x\geqslant 3$. In particular,
$$
\begin{equation}
\#\{1\leqslant n \leqslant x\colon \textit{there are }p\in \mathbb{P}\textit{ and } j\in \mathbb{N} \textit{ such that } p+j^k = n\}\geqslant c_2(k)x
\end{equation}
\tag{1.7}
$$
for any real number $x\geqslant 3$. Corollary 1.2 extends one result of Romanoff, who proved only inequality (1.7). Theorem 1.8. Let $E$ be an elliptic curve given by the equation $y^2=x^3+Ax+B$, where $A$ and $B$ are integers satisfying $\Delta=4A^3+27B^2\neq 0$. Suppose that $E$ does not have complex multiplication. For any positive integer $n$, we put
$$
\begin{equation*}
r(n)=\#\{(p, q)\in \mathbb{P}^{2}\colon p+\#E(\mathbb{F}_q)=n\}.
\end{equation*}
\notag
$$
Then there are constants $x_0>0$, $c_1>0$, $c_2(E)>0$, where $x_0$ and $c_1$ are absolute constants, $c_2(E)$ is a constant depending only on $E$, such that
$$
\begin{equation*}
\#\biggl\{1\leqslant n\leqslant x\colon r(n)\geqslant c_1\frac{x}{(\ln x)^{2}}\biggr\}\geqslant c_{2}(E)x
\end{equation*}
\notag
$$
for any real number $x\geqslant x_0$. Theorem 1.9. Let $a$ and $b$ be integers, $a\geqslant 2$ and $b\geqslant 2$. Then there are positive constants $c_1 (a,b)$ and $c_2(a,b)$ depending only on $a$ and $b$ such that
$$
\begin{equation*}
\begin{aligned} \, &c_1(a,b)\frac{x}{(\ln x)^{1-1/b}} \\ &\qquad\leqslant \#\{1\leqslant n \leqslant x\colon \textit{there are } p\in \mathbb{P}\textit{ and } j\in \mathbb{Z}_{\geqslant 0} \textit{ such that }p+ a^{j^{b}}=n\} \\ &\qquad\leqslant c_2(a,b)\frac{x}{(\ln x)^{1-1/b}} \end{aligned}
\end{equation*}
\notag
$$
for any real number $x\geqslant 3$.
§ 2. Notation In what follows, $p$, $q$ will denote primes. In particular, the sum $\sum_{p\leqslant K}$ should be interpreted as that over all prime numbers not exceeding $K$. By $\pi(x)$ we denote the number of primes not exceeding $x$. Let $\#A$ denote the cardinality of a finite set $A$. By $\mathbb{Z}$, $\mathbb{Z}_{\geqslant 0}$, $\mathbb{N}$, $\mathbb{Q}$, $\mathbb{R}$, and $\mathbb{C}$, we denote the sets of all integers, non-negative integers, positive integers, rational numbers, real numbers, and complex numbers, respectively. By $\mathbb{P}$ we denote the set of all prime numbers. Let $(a,b)$ be the greatest common divisor of integers $a$ and $b$, and $[a,b]$ be the least common multiple of integers $a$ and $b$. If $d$ is a divisor of $b-a$, we say that $b$ is congruent to $a$ modulo $d$ (written $b \equiv a\ (\operatorname{mod} d)$). Let $\varphi$ denote the Euler totient function, that is, $\varphi(n)=\#\{1\leqslant m \leqslant n\colon (m,n)=1\}$. We write $\nu(n)$ for the number of distinct prime divisors of $n$, and $\tau(n)$, for the number of positive divisors of $n$. Let $P^{+}(n)$ denote the greatest prime factor of $n$, and $P^{-}(n)$ denote the least prime factor of $n$ (by convention $P^{+}(1)=1$, $P^{-}(1)=+\infty$). We denote by $\mathcal{M}$ the set of square-free numbers, that is, the number $1$ and the positive integers of the form $p_1\cdots p_l$, where $p_1, \dots, p_{l}$ are distinct primes. By definition, we put
$$
\begin{equation*}
\sum_{\varnothing} = 0,\qquad \prod_{\varnothing}=1.
\end{equation*}
\notag
$$
The symbol ${b\mid a}$ means that $b$ divides $a$. For a fixed $a$, the sum $\sum_{b\mid a}$ and the product $\prod_{b\mid a}$ are taken over all positive divisors of $a$. If $x$ is a real number, then $[x]$ denotes its integral part, and $\lceil x\rceil$ is the smallest integer $n$ such that $n\geqslant x$. We put $\log_{a}x:=\ln x/\ln a$. For real numbers $x,$ $y$ we also use $(x,y)$ to denote the open interval, and $[x,y]$ to denote the closed interval. Also by $(a_1,\dots, a_n)$ we denote a vector. The sense of the notation will be clear from the context.
§ 3. Proofs Proof of Theorem 1.1. We will first prove some auxiliary results.
Lemma 3.1. Let $n>1$ be an integer and $y$ be a positive real number. Then
$$
\begin{equation*}
\prod_{p\mid n\colon p>y}\biggl(1+\frac{1}{p}\biggr)\leqslant \exp\frac{\nu(n)}{y}.
\end{equation*}
\notag
$$
Proof of Lemma 3.1. We put $\Omega = \{p\colon p\mid n\text{ and }p>y\}$. There are two cases to consider.
1) Let $\Omega=\varnothing$. Since $n>1$, we have $\nu(n)\geqslant 1$. Hence
$$
\begin{equation*}
\prod_{p\mid n\colon p>y}\biggl(1+\frac{1}{p}\biggr)= \prod_{\varnothing} = 1 \leqslant \exp\frac{\nu(n)}{y}.
\end{equation*}
\notag
$$
2) Suppose that $\Omega\neq\varnothing$. Using the inequality $1+x\leqslant e^{x}$, $x\in \mathbb{R}$, we have
$$
\begin{equation*}
\prod_{p\mid n\colon p>y}\biggl(1+\frac{1}{p}\biggr)\leqslant \exp\biggl(\sum_{p\mid n\colon p>y} \frac{1}{p}\biggr)\leqslant \exp\frac{\nu(n)}{y}.
\end{equation*}
\notag
$$
Lemma 3.1 is proved. Lemma 3.2. Let $n$ be a positive integer. Then
$$
\begin{equation*}
\prod_{p\mid n\colon p>\ln n}\biggl(1+\frac{1}{p}\biggr)\leqslant 5.
\end{equation*}
\notag
$$
Proof. If $n=1$, then the product equals $1$, and the required result is true. Let $n>1$. It is clear that
$$
\begin{equation}
\nu(n)\leqslant \log_{2}n=\frac{\ln n}{\ln 2}.
\end{equation}
\tag{3.1}
$$
Applying Lemma 3.1 with $y=\ln n$ and (3.1), we obtain
$$
\begin{equation*}
\prod_{p\mid n\colon p>\ln n}\biggl(1+\frac{1}{p}\biggr)\leqslant \exp\frac{\nu(n)}{\ln n} \leqslant \exp\frac1{\ln 2}< 5.
\end{equation*}
\notag
$$
Lemma 3.2 is proved. Lemma 3.3. Let $0<\alpha < 1$ be a real number. Then there is a constant $C(\alpha)>0$ depending only on $\alpha$ such that if $n$ is a positive integer, then
$$
\begin{equation*}
\frac{n}{\varphi(n)}\leqslant C(\alpha)\prod_{p\mid n\colon p\leqslant (\ln n)^{\alpha}} \biggl(1+\frac{1}{p}\biggr).
\end{equation*}
\notag
$$
Proof. We may assume that $n\geqslant \exp(2^{1/\alpha})$. By $\zeta (s)$ we denote the Riemann zeta function. We have
$$
\begin{equation*}
\begin{aligned} \, \frac{n}{\varphi(n)} &= \prod_{p\mid n} \biggl(1-\frac{1}{p}\biggr)^{-1}=\prod_{p\mid n} \frac{p}{p-1}= \prod_{p\mid n} \frac{p}{p-1} \frac{p}{p+1}\frac{p+1}{p} \\ &\leqslant \prod_{p\mid n} \biggl(1+\frac{1}{p}\biggr) \prod_{p}\frac{1}{1-p^{-2}} =\zeta(2)\prod_{p\mid n} \biggl(1+\frac{1}{p}\biggr)=\frac{\pi^2}{6} \prod_{p\mid n} \biggl(1+\frac{1}{p}\biggr) \\ &= \frac{\pi^2}{6} \prod_{p\mid n\colon p\leqslant (\ln n)^{\alpha}} \biggl(1+\frac{1}{p}\biggr)\prod_{p\mid n\colon (\ln n)^{\alpha} < p\leqslant \ln n} \biggl(1+\frac{1}{p}\biggr) \prod_{p\mid n\colon p> \ln n} \biggl(1+\frac{1}{p}\biggr). \end{aligned}
\end{equation*}
\notag
$$
By Lemma 3.2, the last product does not exceed $5$. It is well-known (see, for example, Ch. 1 in [4]) that
$$
\begin{equation}
B_1 \ln x \leqslant \prod_{p\leqslant x} \biggl(1+\frac{1}{p}\biggr)\leqslant B_2\ln x,\qquad x\geqslant 2,
\end{equation}
\tag{3.2}
$$
where $B_1 >0$ and $B_2>0$ are absolute constants. Hence
$$
\begin{equation*}
\begin{aligned} \, &\prod_{p\mid n\colon (\ln n)^{\alpha}< p\leqslant \ln n} \biggl(1+\frac{1}{p}\biggr) \leqslant \prod_{(\ln n)^{\alpha}< p\leqslant \ln n} \biggl(1+\frac{1}{p}\biggr) \\ &\qquad=\prod_{p\leqslant \ln n} \biggl(1+\frac{1}{p}\biggr) \biggm/ \prod_{ p\leqslant (\ln n)^{\alpha}} \biggl(1+\frac{1}{p}\biggr) \leqslant \frac{B_2 \ln\ln n}{B_1\ln(\ln n)^{\alpha}}= \frac{B_2 \ln\ln n}{B_1 \alpha \ln\ln n}=\frac{B}{\alpha}. \end{aligned}
\end{equation*}
\notag
$$
As a result,
$$
\begin{equation*}
\frac{n}{\varphi(n)}\leqslant \frac{5\pi^2B}{6\alpha} \prod_{p\mid n\colon p\leqslant (\ln n)^{\alpha}} \biggl(1+\frac{1}{p}\biggr)= C(\alpha) \prod_{p\mid n\colon p\leqslant (\ln n)^{\alpha}}\biggl(1+\frac{1}{p}\biggr).
\end{equation*}
\notag
$$
Lemma 3.3 is proved. Let us continue the proof of Theorem 1.1. We may assume that $M\,{\geqslant} \exp (2^{1/\alpha})$. We put
$$
\begin{equation*}
y=(\ln M)^{\alpha}\quad\text{and}\quad S=\sum_{n=1}^{N} \biggl(\frac{a_n}{\varphi (a_n)}\biggr)^s.
\end{equation*}
\notag
$$
Note that $y\geqslant 2$. Let $1\leqslant n \leqslant N$. By Lemma 3.3, we have
$$
\begin{equation*}
\begin{aligned} \, \frac{a_n}{\varphi (a_n)} &\leqslant C(\alpha) \prod_{p\mid a_n\colon p\leqslant (\ln a_n)^{\alpha}} \biggl(1+\frac{1}{p}\biggr) \\ &\leqslant C(\alpha) \prod_{p\mid a_n\colon p\leqslant y} \biggl(1+\frac{1}{p}\biggr)= C(\alpha)\sum_{\substack{d\mid a_n:\\d\in \mathcal{M},\,P^{+}(d)\leqslant y}} \frac{1}{d}. \end{aligned}
\end{equation*}
\notag
$$
Hence
$$
\begin{equation*}
\begin{aligned} \, S&\leqslant (C(\alpha))^s\sum_{1\leqslant n \leqslant N} \biggl(\sum_{\substack{d_1\mid a_n:\\d_{1}\in \mathcal{M},\,P^{+}(d_{1})\leqslant y}}\frac{1}{d_1}\biggr)\cdots \biggl(\sum_{\substack{d_s\mid a_n:\\ d_{s}\in \mathcal{M},\,P^{+}(d_{s})\leqslant y}}\frac{1}{d_s}\biggr) \\ &=(C(\alpha))^s\sum_{1\leqslant n \leqslant N} \sum_{\substack{d_1\mid a_n,\dots,d_s\mid a_n \\d_1,\dots,d_s \in \mathcal{M}\\ P^{+}(d_1)\leqslant y,\,\dots,\,P^{+}(d_s)\leqslant y}} \frac{1}{d_1\cdots d_s} \\ &\leqslant (C(\alpha))^s\sum_{\substack{1\leqslant d_1 \leqslant M\\ P^{+}(d_1)\leqslant y\\ d_1\in \mathcal{M}}}\cdots \sum_{\substack{1\leqslant d_s \leqslant M\\ P^{+}(d_s)\leqslant y\\ d_s\in \mathcal{M}}} \frac{1}{d_1\cdots d_s} \sum_{\substack{1\leqslant n \leqslant N:\\ d_1\mid a_n,\dots,\,d_s\mid a_n}} 1 \\ &=(C(\alpha))^s\sum_{\substack{1\leqslant d_1 \leqslant M\\ P^{+}(d_1)\leqslant y\\ d_1\in \mathcal{M}}}\cdots \sum_{\substack{1\leqslant d_s \leqslant M\\ P^{+}(d_s)\leqslant y\\ d_s\in \mathcal{M}}} \frac{\omega([d_1,\dots, d_s])}{d_1\cdots d_s}. \end{aligned}
\end{equation*}
\notag
$$
Note that if $d$ and $d'$ are positive integers and $d'\mid d$, then
$$
\begin{equation*}
\omega(d) \leqslant \omega (d').
\end{equation*}
\notag
$$
Let $d_1,\dots, d_s$ be integers such that $1\leqslant d_i \leqslant M$, $P^{+}(d_i)\leqslant y$, $d_i\in \mathcal{M}$ for all $1\leqslant i \leqslant s$. Since
$$
\begin{equation*}
P^{+}([d_1,\dots, d_s])\mid [d_1,\dots, d_s],
\end{equation*}
\notag
$$
we have
$$
\begin{equation*}
\omega([d_1,\dots, d_s]) \leqslant \omega\bigl(P^{+}([d_1,\dots, d_s])\bigr).
\end{equation*}
\notag
$$
Next, since
$$
\begin{equation*}
P^{+}([d_1,\dots, d_s])=P^{+}(d_1\cdots d_s),
\end{equation*}
\notag
$$
we obtain
$$
\begin{equation}
\begin{aligned} \, S&\leqslant(C(\alpha))^s\sum_{\substack{1\leqslant d_1 \leqslant M\\ P^{+}(d_1)\leqslant y\\ d_1\in \mathcal{M}}}\dots \sum_{\substack{1\leqslant d_s \leqslant M\\ P^{+}(d_s)\leqslant y\\ d_s\in \mathcal{M}}} \frac{\omega(P^{+}(d_1\cdots d_s))}{d_1\cdots d_s} \notag \\ &\leqslant (C(\alpha))^s\sum_{\substack{d_{1}\in \mathcal{M}:\\P^{+}(d_1)\leqslant y}} \cdots \sum_{\substack{d_s\in \mathcal{M}\colon\\P^{+}(d_s)\leqslant y}} \frac{\omega(P^{+}(d_1\cdots d_s))}{d_1\cdots d_s}= (C(\alpha))^s S'. \end{aligned}
\end{equation}
\tag{3.3}
$$
It is easy to see that
$$
\begin{equation}
S'=\omega(1)+\sum_{p\leqslant y} \omega(p) S_{p},
\end{equation}
\tag{3.4}
$$
where
$$
\begin{equation*}
S_{p}=\sum_{\substack{d_{1},\dots, d_{s}\in \mathcal{M}:\\ P^{+}(d_{1})\leqslant p,\, \dots, \, P^{+}(d_{s})\leqslant p,\\ \text{and }\exists\, \tau\colon p\mid d_{\tau}}} \frac{1}{d_{1}\cdots d_{s}}.
\end{equation*}
\notag
$$
Give a prime $p$ with $p\leqslant y$ and an integer $\tau$ with $1\leqslant \tau \leqslant s$, we set
$$
\begin{equation*}
S_{p}(\tau)=\sum_{\substack{d_{1},\dots, d_{s}\in \mathcal{M}:\\ P^{+}(d_{1})\leqslant p,\,\dots,\, P^{+}(d_{s})\leqslant p,\\ \text{and } p\mid d_{\tau}}} \frac{1}{d_{1}\cdots d_{s}}.
\end{equation*}
\notag
$$
Applying (3.2), we have (here, the product is over primes $q$)
$$
\begin{equation*}
\begin{aligned} \, S_{p}(\tau) &\leqslant \frac{1}{p} \sum_{\substack{d_{1},\dots, d_{s}\in \mathcal{M}:\\ P^{+}(d_{1})\leqslant p,\, \dots,\, P^{+}(d_{s})\leqslant p}} \frac{1}{d_{1}\cdots d_{s}}= \frac{1}{p} \Biggl(\sum_{\substack{d\in \mathcal{M}:\\ P^{+}(d)\leqslant p}}\frac{1}{d}\Biggr)^s \\ &=\frac{1}{p}\biggl(\prod_{q\leqslant p}\biggl(1+\frac{1}{q}\biggr)\biggr)^s\leqslant \frac{(B_{2}\ln p)^s}{p}. \end{aligned}
\end{equation*}
\notag
$$
It is easy to see that
$$
\begin{equation*}
S_{p}\leqslant \sum_{\tau=1}^sS_{p}(\tau).
\end{equation*}
\notag
$$
We obtain
$$
\begin{equation*}
S_{p} \leqslant s \frac{(B_{2}\ln p)^s}{p}\leqslant \frac{(2B_{2}\ln p)^s}{p}.
\end{equation*}
\notag
$$
We may assume that $2B_{2}\geqslant 1$. Applying (3.4) and taking into account that $\omega(1)= N$ and $y=(\ln M)^{\alpha}$, we obtain
$$
\begin{equation*}
S'\leqslant (2B_{2})^s\biggl(N+\sum_{p\leqslant (\ln M)^{\alpha}} \frac{\omega(p)(\ln p)^s}{p}\biggr).
\end{equation*}
\notag
$$
By (3.3), we have
$$
\begin{equation*}
\begin{aligned} \, S &\leqslant \bigl(2B_{2}C(\alpha)\bigr)^s \biggl(N+\sum_{p\leqslant (\ln M)^{\alpha}}\frac{\omega(p)(\ln p)^s}{p}\biggr) \\ &=\bigl( \widetilde{C}(\alpha)\bigr)^s \biggl(N+\sum_{p\leqslant (\ln M)^{\alpha}}\frac{\omega(p)(\ln p)^s}{p}\biggr), \end{aligned}
\end{equation*}
\notag
$$
where $\widetilde{C}(\alpha)>0$ is a constant depending only on $\alpha$. Theorem 1.1 is proved. Proof of Theorem 1.2. The (large enough) constant $M_0>0$ depending on the sequence $\alpha(M)$ will be chosen later. For now, we assume that $M_0$ satisfy the following conditions: $M_0 \geqslant 100$ and
$$
\begin{equation*}
\alpha(M)\leqslant \frac12,\qquad (\ln M)^{\alpha(M)}\leqslant \frac{\ln M}4
\end{equation*}
\notag
$$
for any $M\geqslant M_0$. Let $M\geqslant M_0$. Setting
$$
\begin{equation*}
y= (\ln M)^{\alpha(M)},\qquad z=\frac{\ln M}2,
\end{equation*}
\notag
$$
we have $2\leqslant y \leqslant z/2.$ We define
$$
\begin{equation*}
A=\{1\leqslant n \leqslant M\colon p\mid n\text{ for any }p\in (y,z]\text{ and } p\nmid n\text{ for any } p\leqslant y\}.
\end{equation*}
\notag
$$
We define
$$
\begin{equation*}
Q=\prod_{y<p\leqslant z} p.
\end{equation*}
\notag
$$
Hence
$$
\begin{equation*}
\ln Q=\sum_{y<p\leqslant z} \ln p= \theta(z) - \theta(y),\quad \text{where}\quad\theta(x)=\sum_{p\leqslant x}\ln p.
\end{equation*}
\notag
$$
Since
$$
\begin{equation}
\lim_{x\to +\infty}\frac{\theta(x)}{x}=1
\end{equation}
\tag{3.5}
$$
(see, for example, Ch. 3 in [4]), there is an absolute constant $c_1>0$ such that $\theta (x) \geqslant x/2$ for all $x\,{\geqslant}\, c_1$. We may assume that $M_0 > \exp (2 c_1)$; therefore, $z=(\ln M)/2\,{\geqslant}\, c_1$ and, hence, $\theta (z)\geqslant z/2 = (\ln M)/4$. It follows from (3.5) that $ \theta(x)\leqslant b x$ for all $x\geqslant 2$, where $b>0$ is an absolute constant. Since $y\geqslant 2$, we obtain
$$
\begin{equation*}
\theta (y) \leqslant b y = b (\ln M)^{\alpha (M)}\leqslant b (\ln M)^{1/2}.
\end{equation*}
\notag
$$
Hence
$$
\begin{equation*}
\ln Q\geqslant \frac{\ln M}{4} - b (\ln M)^{1/2}\geqslant 100
\end{equation*}
\notag
$$
if $M_0$ is sufficiently large. In particular, $\Omega = \{p\colon y< p \leqslant z\}\neq \varnothing$ and $Q\geqslant 100$. By (3.5), there is an absolute constant $c_2>0$ such that $\theta (x) \leqslant (3/2)x$ for all $x\geqslant c_2$. We may assume that $M_0 > \exp(2c_2)$ and, hence, $z=(\ln M)/2 \geqslant c_2$. Therefore,
$$
\begin{equation*}
\ln Q\leqslant \theta (z)\leqslant \frac{3}{2}\,z=\frac{3}{4}\ln M=\ln M^{3/4}.
\end{equation*}
\notag
$$
We obtain
$$
\begin{equation*}
Q\leqslant M^{3/4}<M.
\end{equation*}
\notag
$$
This shows that $Q\in A$, and hence, $A\neq\varnothing$.
Thus, $A\subset\{1,\dots, M\}$, $A\neq \varnothing$ and
$$
\begin{equation*}
\#\{n\in A\colon n\equiv 0\ (\operatorname{mod} p)\}=0
\end{equation*}
\notag
$$
for any prime $p\leqslant y=(\ln M)^{\alpha(M)}$. If $n\in A$, then $n>1$, since $Q\mid n$ and $Q\geqslant100$.
Let $n\in A$. Then
$$
\begin{equation*}
\frac{n}{\varphi (n)}=\prod_{p\mid n}\biggl(1-\frac{1}{p}\biggr)^{-1}\geqslant \prod_{y<p\leqslant z}\biggl(1-\frac{1}{p}\biggr)^{-1}= \prod_{p\leqslant z}\biggl(1-\frac{1}{p}\biggr)^{-1}\biggm/ \prod_{p\leqslant y} \biggl(1-\frac{1}{p}\biggr)^{-1}.
\end{equation*}
\notag
$$
Since
$$
\begin{equation*}
D_1 \ln x\leqslant \prod_{p \leqslant x} \biggl(1-\frac{1}{p}\biggr)^{-1}\leqslant D_2 \ln x,\qquad x\geqslant 2,
\end{equation*}
\notag
$$
where $D_1 >0$ and $D_2 >0$ are absolute constants, and $2 \leqslant y \leqslant z/2< z$, we have
$$
\begin{equation*}
\begin{aligned} \, \prod_{p\leqslant y}\biggl(1-\frac{1}{p}\biggr)^{-1} &\leqslant D_2 \ln y= D_2\alpha(M)\ln\ln M, \\ \prod_{p\leqslant z}\biggl(1-\frac{1}{p}\biggr)^{-1} &\geqslant D_1 \ln z= D_1 \ln \biggl(\frac{1}{2}\ln M\biggr)\geqslant \frac{D_1}{2}\ln\ln M. \end{aligned}
\end{equation*}
\notag
$$
Hence
$$
\begin{equation*}
\frac{n}{\varphi(n)}\geqslant \frac{(D_1/2)\ln\ln M}{D_2 \alpha(M)\ln\ln M}=\frac{c}{\alpha(M)}.
\end{equation*}
\notag
$$
We obtain
$$
\begin{equation*}
\sum_{n\in A}\frac{n}{\varphi (n)}\geqslant \frac{c}{\alpha (M)} \#A,
\end{equation*}
\notag
$$
where $c>0$ is an absolute constant. Theorem 1.2 is proved. Proof of Theorem 1.3. We have
$$
\begin{equation*}
\begin{gathered} \, R(n)=a_k n^k+\dots+ a_0,\qquad a_k\neq 0,\quad \delta=(a_0,\dots,a_k), \\ |a_i|\leqslant x,\quad i=0,\dots, k,\qquad (\ln x)^{\varepsilon} \leqslant z \leqslant x,\quad x\geqslant2. \end{gathered}
\end{equation*}
\notag
$$
We put
$$
\begin{equation*}
\Omega=\{-z\leqslant n \leqslant z\colon R(n)\neq 0\}.
\end{equation*}
\notag
$$
Suppose that $\Omega \neq \varnothing$. We are going to obtain an upper bound for
$$
\begin{equation*}
S =\sum_{n\in \Omega} \biggl(\frac{|R(n)|}{\varphi (|R(n)|)}\biggr)^s.
\end{equation*}
\notag
$$
Putting
$$
\begin{equation*}
\widetilde{R}(n)=\frac{1}{\delta} R(n),
\end{equation*}
\notag
$$
we have
$$
\begin{equation*}
\begin{gathered} \, \widetilde{R}(n)=\widetilde{a}_{k}n^k+\dots+\widetilde{a}_0,\qquad (\widetilde{a}_{0},\dots, \widetilde{a}_k) = 1, \\ |\widetilde{a}_{i}|\leqslant x,\qquad i=0,\dots, k. \end{gathered}
\end{equation*}
\notag
$$
Since $\varphi (mn)\geqslant \varphi(m)\varphi(n)$ for all positive integers $m$ and $n$, we obtain
$$
\begin{equation}
S=\sum_{n\in \Omega} \biggl(\frac{\delta|\widetilde{R}(n)|} {\varphi (\delta|\widetilde{R}(n)|)}\biggr)^s\leqslant \biggl(\frac{\delta}{\varphi(\delta)}\biggr)^s\sum_{n\in \Omega} \biggl(\frac{|\widetilde{R}(n)|}{\varphi (|\widetilde{R}(n)|)}\biggr)^s= \biggl(\frac{\delta}{\varphi(\delta)}\biggr)^s \widetilde{S}.
\end{equation}
\tag{3.6}
$$
Let $n\in \Omega$. Since $|\widetilde{a}_i|\leqslant x$, $|n|\leqslant z\leqslant x$ and $x\geqslant 2$, we have
$$
\begin{equation*}
\begin{aligned} \, |\widetilde{R}(n)|&=|\widetilde{a}_k n^k+\dots+\widetilde{a}_0|\leqslant x(1+x+\dots+ x^k) \\ &=x\frac{x^{k+1}-1}{x-1}\leqslant x\frac{x^{k+1}}{x/2}= 2 x^{k+1}\leqslant x^{k+2}\leqslant x^{3k}. \end{aligned}
\end{equation*}
\notag
$$
We put $M= x^{3k}$. We have proved that if $n\in\Omega$ then $|\widetilde{R}(n)| \leqslant M$.
Let $c(\varepsilon)>0$ be such:
i) $c(\varepsilon)\geqslant 30$;
ii) $\ln x \geqslant 2^{4/\varepsilon}$ for $x\geqslant c(\varepsilon)$;
iii) $\bigl(3 (\ln x)^2\bigr)^{\varepsilon/4} \leqslant (\ln x)^{\varepsilon}$ for $x\geqslant c(\varepsilon)$.
Let $x \geqslant c(\varepsilon)$. There are two cases to consider.
1) Let $k\geqslant \ln x$. Let $n\in \Omega$, Then
$$
\begin{equation*}
\begin{aligned} \, 1 &\leqslant \frac{|\widetilde{R}(n)|}{\varphi(|\widetilde{R}(n)|)} \leqslant c\ln\ln(|\widetilde{R}(n)|+2)\leqslant c\ln\ln(x^{3k}+2)\leqslant c\ln\ln(x^{4k}) \\ &=c(\ln k+ \ln\ln x+ \ln 4)\leqslant c(\ln k+ 3\ln\ln x)\leqslant c(4 \ln k)=c_1 \ln k. \end{aligned}
\end{equation*}
\notag
$$
Hence
$$
\begin{equation*}
\widetilde{S}=\sum_{n\in \Omega} \biggl(\frac{|\widetilde{R}(n)|} {\varphi(|\widetilde{R}(n)|)}\biggr)^s \leqslant (c_1 \ln k)^s \# \Omega.
\end{equation*}
\notag
$$
We recall that $(\ln x)^{\varepsilon} \leqslant z \leqslant x$, and, hence, $z\geqslant 1$. Since
$$
\begin{equation*}
\# \Omega = \#\{ -z\leqslant n \leqslant z\colon \widetilde{R}(n)\neq 0\}\leqslant 2z+1 \leqslant 3z,
\end{equation*}
\notag
$$
we have $\widetilde{S}\leqslant (c_2 \ln k)^s z$. Next, $S\leqslant (\delta/\varphi(\delta))^s\widetilde{S}$, and so
$$
\begin{equation*}
S=\sum_{n\in \Omega} \biggl(\frac{|R(n)|}{\varphi(|R(n)|)}\biggr)^s \leqslant \biggl(c_2\frac{\delta}{\varphi(\delta)}\ln k\biggr)^s z.
\end{equation*}
\notag
$$
2) Let $k< \ln x$. We have
$$
\begin{equation*}
\ln M = 3 k\ln x\leqslant 3(\ln x)^{2}.
\end{equation*}
\notag
$$
We take $\alpha = \varepsilon/4$. From the conditions on $c(\varepsilon)$, we obtain
$$
\begin{equation*}
\begin{gathered} \, \ln M =3 k\ln x\geqslant 3 \ln x \geqslant 2^{1/\alpha}, \\ 2\leqslant (\ln M)^{\alpha}\leqslant \bigl(3(\ln x)^2\bigr)^{\alpha}= \bigl(3(\ln x)^2\bigr)^{\varepsilon / 4}\leqslant(\ln x)^{\varepsilon}\leqslant z. \end{gathered}
\end{equation*}
\notag
$$
For any positive integer $d$, we set
$$
\begin{equation*}
\omega(d)=\#\{n\in \Omega\colon \widetilde{R}(n)\equiv 0\ (\operatorname{mod}d)\}.
\end{equation*}
\notag
$$
Let $p$ be a prime number. We have
$$
\begin{equation*}
\omega(p)\leqslant \#\{-z\leqslant n\leqslant z\colon \widetilde{R}(n)\equiv 0\ (\operatorname{mod}p)\}.
\end{equation*}
\notag
$$
Since $(\widetilde{a}_0,\dots, \widetilde{a}_k)=1$, there is a number $\widetilde{a}_i$ such that $\widetilde{a}_i\not \equiv 0\ (\operatorname{mod}p)$. Therefore, the number of solutions of the congruence
$$
\begin{equation}
\widetilde{R}(n)\equiv 0\quad (\operatorname{mod} p)
\end{equation}
\tag{3.7}
$$
is at most $k$. It is clear that the number of solutions is at most $p$. So, the number of solutions of congruence (3.7) is at most $\min (p,k)$. Let $m_1<\dots< m_t$ be all numbers from $\{1,\dots, p\}$ satisfying congruence (3.7) (in this case, $t\leqslant \min (p,k)$). Let $1 \leqslant j \leqslant t$. We have
$$
\begin{equation*}
\#\{-z\leqslant n\leqslant z\colon n\equiv m_j\ (\operatorname{mod}p)\}\leqslant \frac{2z}{p}+1.
\end{equation*}
\notag
$$
We obtain
$$
\begin{equation*}
\omega(p)\leqslant \min(p,k)\biggl(\frac{2z}{p}+1\biggr).
\end{equation*}
\notag
$$
If $p\leqslant (\ln M)^{\alpha}$, then $p\leqslant z$. Therefore,
$$
\begin{equation}
\omega(p)\leqslant \min(p, k)\frac{3z}{p}
\end{equation}
\tag{3.8}
$$
for any $p\leqslant(\ln M)^{\alpha}$. Applying Theorem 1.1, we obtain
$$
\begin{equation*}
\widetilde{S}=\sum_{n\in \Omega} \biggl(\frac{|\widetilde{R}(n)|} {\varphi(|\widetilde{R}(n)|)}\biggr)^s\leqslant (C(\alpha))^s \biggl(\#\Omega +\sum_{p\leqslant (\ln M)^{\alpha}} \frac{\omega(p) (\ln p)^s}{p}\biggr).
\end{equation*}
\notag
$$
Since $\alpha=\varepsilon /4$, we see that $C(\alpha)=C(\varepsilon)>0$ is a constant depending only on $\varepsilon$. Applying (3.8) and taking into account that $\#\Omega \leqslant 2z+1 \leqslant 3z$, we obtain
$$
\begin{equation}
\begin{aligned} \, \widetilde{S} &=\sum_{n\in \Omega} \biggl(\frac{|\widetilde{R}(n)|} {\varphi(|\widetilde{R}(n)|)}\biggr)^s \leqslant (C(\varepsilon))^s \biggl(3z +\sum_{p\leqslant (\ln M)^{\alpha}} \frac{\min(p,k) 3z (\ln p)^s}{p^2}\biggr) \notag \\ &\leqslant (C(\varepsilon))^s \biggl(3z + \! \sum_{p}\frac{\min(p,k) 3z (\ln p)^s}{p^2}\biggr)= (C(\varepsilon))^s 3z \biggl(1 +\!\sum_{p} \frac{\min(p,k) (\ln p)^s}{p^2}\biggr). \end{aligned}
\end{equation}
\tag{3.9}
$$
Lemma 3.4. Let $s$ be a positive integer, and $x\geqslant 1$ be a real number. Then
$$
\begin{equation}
\int_{x}^{+\infty}t^{s-1}e^{-t}\,dt\leqslant s!\, x^{s-1}e^{-x}.
\end{equation}
\tag{3.10}
$$
Proof. Putting
$$
\begin{equation*}
\Gamma(s,x)=\int_{x}^{+\infty}t^{s-1}e^{-t}\,dt,
\end{equation*}
\notag
$$
we have
$$
\begin{equation}
\begin{aligned} \, \Gamma(s,x)&=\int_{x}^{+\infty}t^{s-1}e^{-t}\,dt= -\int_{x}^{+\infty}t^{s-1}\,d e^{-t} \notag \\ &=-t^{s-1}e^{-t}\bigr|_{x}^{+\infty}+ (s-1)\int_{x}^{+\infty}e^{-t}t^{s-2}\,dt =x^{s-1}e^{-x}+(s-1)\Gamma(s-1,x). \end{aligned}
\end{equation}
\tag{3.11}
$$
Now we induct on $s$. If $s=1$, we have $\Gamma(1,x)=e^{-x}$, and (3.10) holds. Suppose that $s\geqslant 2$ and the claim is true for $s-1$. Then (3.11) and the induction hypothesis gives us
$$
\begin{equation*}
\begin{aligned} \, \Gamma(s,x)&=x^{s-1}e^{-x}+(s-1)\Gamma(s-1,x)\leqslant x^{s-1}e^{-x} + (s-1)(s-1)!\, x^{s-2}e^{-x} \\ &=s!\, x^{s-1}e^{-x}\biggl(\frac{1}{s!}+ \frac{1-1/s}{x}\biggr)\leqslant s!\, x^{s-1}e^{-x} \biggl(1 -\frac{1}{s}+\frac{1}{s!} \biggr) \leqslant s!\, x^{s-1}e^{-x}, \end{aligned}
\end{equation*}
\notag
$$
since $x\geqslant 1$. The claim follows, proving Lemma 3.4s. Lemma 3.5. Let $k$ and $s$ be positive integers. Then
$$
\begin{equation}
\sum_{p\leqslant k}\frac{(\ln p)^s}{p} \leqslant c (\ln k)^s,
\end{equation}
\tag{3.12}
$$
$$
\begin{equation}
\sum_{p>k}\frac{(\ln p)^s}{p^2} \leqslant c s!\, \frac{(\ln (k+2))^{s-1}}{k},
\end{equation}
\tag{3.13}
$$
where $c$ is a positive absolute constant. Proof. For any positive integer $n$ we put
$$
\begin{equation*}
a_{n}= \begin{cases} (\ln n)^s &\text{if }n\in \mathbb{P}, \\ 0 &\text{otherwise}. \end{cases}
\end{equation*}
\notag
$$
We set
$$
\begin{equation*}
A(x)=\sum_{n\leqslant x} a_{n}.
\end{equation*}
\notag
$$
For any real number $x\geqslant 2$, we have
$$
\begin{equation*}
A(x)=\sum_{p\leqslant x} (\ln p)^s\leqslant (\ln x)^s\pi(x)\leqslant (\ln x)^s c\,\frac{x}{\ln x}=c x (\ln x)^{s-1},
\end{equation*}
\notag
$$
where $c$ is a positive absolute constant. Since $A(x)=0$ for $1\leqslant x < 2$, we obtain $A(x) \leqslant c x (\ln x)^{s-1}$ for $x\geqslant 1$.
1. We first prove (3.12). We denote the sum in (3.12) by $S_1$. Suppose that $k \geqslant 2$. We put $f(x)=1/x$. By partial summation (see, for example, Theorem 2.1.1 in [5]), we have
$$
\begin{equation*}
S_{1}=\sum_{n\leqslant k} a_{n}f(n)= A(k)f(k) - \int_{1}^{k} A(x)f'(x)\, dx.
\end{equation*}
\notag
$$
Next, we have
$$
\begin{equation*}
A(k)f(k)\leqslant c (\ln k)^{s-1}\leqslant c\, \frac{\ln k}{\ln 2}(\ln k)^{s-1} \leqslant 2c (\ln k)^s
\end{equation*}
\notag
$$
and
$$
\begin{equation*}
\begin{aligned} \, -\int_{1}^{k}A(x)f'(x)\, dx &= \int_{1}^{k}\frac{A(x)}{x^{2}}\,dx\leqslant c\int_{1}^{k} \frac{(\ln x)^{s-1}}{x}\, dx \\ &=c\int_{0}^{\ln k} t^{s-1}\, dt= \frac{c}{s} (\ln k)^s\leqslant c (\ln k)^s. \end{aligned}
\end{equation*}
\notag
$$
We obtain $S_{1} \leqslant (3c) (\ln k)^s$.
Finally, if $k=1$, then $S_{1}= 0$, and the previous inequality also holds. This proves inequality (3.12).
2. Now we prove (3.13). We denote the sum in (3.13) by $S_{2}$. We put $f(x)=1/x^{2}$. Applying partial summation, we have
$$
\begin{equation*}
\sum_{n\leqslant u} a_{n}f(n) = A(u)f(u) - \int_{1}^{u}A(x)f'(x)\, dx
\end{equation*}
\notag
$$
for any real number $u\geqslant 1$. Since $A(u)f(u)\to 0$ as $u\to +\infty$, we obtain
$$
\begin{equation*}
\sum_{n=1}^{+\infty}a_{n}f(n)= - \int_{1}^{+\infty} A(x)f'(x)\, dx.
\end{equation*}
\notag
$$
We also have
$$
\begin{equation*}
\sum_{n\leqslant k}a_{n}f(n)= A(k)f(k) - \int_{1}^{k}A(x)f'(x)\, dx.
\end{equation*}
\notag
$$
Therefore,
$$
\begin{equation*}
\begin{aligned} \, S_{2}&=\sum_{n\geqslant k+1} a_{n}f(n)= - \int_{k}^{+\infty} A(x)f'(x)\, dx - A(k)f(k) \leqslant- \int_{k}^{+\infty} A(x)f'(x)\, dx \\ &= 2\int_{k}^{+\infty}\frac{A(x)}{x^{3}}\, dx\leqslant 2c\int_{k}^{+\infty} \frac{(\ln x)^{s-1}}{x^{2}}\,dx = 2 c \int_{\ln k}^{+\infty} t^{s-1}e^{-t}\, dt= 2c I_{k}. \end{aligned}
\end{equation*}
\notag
$$
By Lemma 3.4, for $k\geqslant 3$, we have
$$
\begin{equation*}
I_{k}\leqslant s!\, (\ln k)^{s-1} e^{-\ln k}=s!\, \frac{(\ln k)^{s-1}}{k}\leqslant s!\, \frac{(\ln (k+2))^{s-1}}{k}
\end{equation*}
\notag
$$
and
$$
\begin{equation*}
I_{k} \leqslant \int_{0}^{+\infty} t^{s-1}e^{-t}\, dt= \Gamma(s)= (s-1)!\leqslant s!\, 2 \frac{(\ln (k+2))^{s-1}}{k}
\end{equation*}
\notag
$$
if $k\in \{1, 2\}$. Hence
$$
\begin{equation*}
I_{k} \leqslant s!\, 2 \frac{(\ln(k+2))^{s-1}}{k}
\end{equation*}
\notag
$$
for any positive integer $k$. As a result,
$$
\begin{equation*}
S_{2} \leqslant 4c s! \, \frac{(\ln (k+2))^{s-1}}{k},
\end{equation*}
\notag
$$
proving inequality (3.13), and, therefore, Lemma 3.5. We may assume that $c\geqslant 1$, where $c$ is the constant from Lemma 3.5. Applying Lemma 3.5 and taking into account that $\ln (k+2) \leqslant 2 \ln (k+1)$, we obtain
$$
\begin{equation*}
\begin{aligned} \, \sum_{p\leqslant k}\frac{(\ln p)^s}{p} &\leqslant c \bigl(\ln k\bigr)^s \leqslant c \bigl(\ln (k+1)\bigr)^s \leqslant c^s \bigl(\ln (k+1)\bigr)^s \leqslant c^s s!\, \bigl(\ln (k+1)\bigr)^s, \\ k\sum_{p>k}\frac{(\ln p)^s}{p^2} &\leqslant c s!\, \bigl(\ln (k+2)\bigr)^{s-1}\leqslant c s!\, \bigl(\ln (k+2)\bigr)^s\leqslant c s!\, 2^s \bigl(\ln (k+1)\bigr)^s \\ &\leqslant (2c)^s s! \, \bigl(\ln (k+1)\bigr)^s. \end{aligned}
\end{equation*}
\notag
$$
Since $c^s+(2c)^s\leqslant 2 (2c)^s\leqslant (4c)^s$, we have
$$
\begin{equation*}
\sum_{p}\frac{\min(p,k) (\ln p)^s}{p^2}= \sum_{p\leqslant k}\frac{(\ln p)^s}{p}+ k\sum_{p>k}\frac{(\ln p)^s}{p^2} \leqslant (4c)^s s! \, \bigl(\ln (k+1)\bigr)^s.
\end{equation*}
\notag
$$
Next,
$$
\begin{equation*}
1\leqslant \bigl(\ln (k+2)\bigr)^s\leqslant 2^s\bigl(\ln (k+1)\bigr)^s\leqslant (2c)^ss!\, \bigl(\ln (k+1)\bigr)^s,
\end{equation*}
\notag
$$
and hence
$$
\begin{equation}
1+ \sum_{p}\frac{\min(p,k) (\ln p)^s}{p^2}\leqslant (8c)^ss!\, \bigl(\ln (k+1)\bigr)^s.
\end{equation}
\tag{3.14}
$$
By (3.9) we have
$$
\begin{equation*}
\begin{aligned} \, \widetilde{S}&\leqslant (C(\varepsilon))^s 3z (8c)^ss!\, \bigl(\ln (k+1)\bigr)^s \leqslant (24c C(\varepsilon))^s z s!\, \bigl(\ln (k+1)\bigr)^s \\ &=(C_{1}(\varepsilon))^s z s!\, \bigl(\ln (k+1)\bigr)^s, \end{aligned}
\end{equation*}
\notag
$$
where $C_{1}(\varepsilon)>0$ is a constant depending only on $\varepsilon$. From (3.6) we get
$$
\begin{equation*}
S=\sum_{n\in \Omega} \biggl(\frac{|R(n)|}{\varphi(|R(n)|)}\biggr)^s\leqslant \biggl( C_1(\varepsilon)\frac{\delta}{\varphi(\delta)} \ln (k+1)\biggr)^ss!\, z.
\end{equation*}
\notag
$$
This proves Theorem 1.3 in the case $x\geqslant c(\varepsilon)$. Since $n/\varphi(n) \leqslant c \ln\ln (n+2)$, the claim in the case $3 \leqslant x< c(\varepsilon)$ is trivial. Theorem 1.3 is proved. Proof of Corollary 1.1. We put
$$
\begin{equation*}
x_{0}(R)=\max (|a_{0}|,\dots, |a_{k}|)+10.
\end{equation*}
\notag
$$
It is clear that $x_{0}(R)$ is a positive constant depending only on $R$. Suppose that $x\geqslant x_{0}(R)$. Applying Theorem 1.3 with $\varepsilon=1/2$ and $z=x$, we obtain
$$
\begin{equation*}
\sum_{\substack{-x \leqslant n \leqslant x\\ R(n)\neq 0}} \biggl(\frac{|R(n)|}{\varphi(|R(n)|)}\biggr)^s\leqslant \biggl(C\left(1\over 2\right)\frac{\delta}{\varphi(\delta)}\ln (k+1)\biggr)^ss!\, x= (c_{1}(R))^ss!\, x,
\end{equation*}
\notag
$$
where $\delta=(a_{0},\dots, a_k)$ and $c_{1}(R)= C(1/2)(\delta/\varphi(\delta))\ln (k+1)$ is a positive constant depending only on $R$.
Suppose that $1\,{\leqslant}\, x\,{<}\, x_{0}(R)$. Let $\Omega\,{=}\,\{n:-x \leqslant n \leqslant x$, $ R(n) \neq 0\} \neq \varnothing$. We put
$$
\begin{equation*}
m(R)=\max_{-x_{0}(R)\leqslant n \leqslant x_{0}(R)} |R(n)|+10.
\end{equation*}
\notag
$$
It is clear that $m(R)$ is a positive constant depending only on $R$. For any integer $n$ such that $-x_{0}(R)\leqslant n \leqslant x_{0}(R)$ and $R(n)\neq 0$, we have
$$
\begin{equation*}
\frac{|R(n)|}{\varphi(|R(n)|)} \leqslant |R(n)|\leqslant m(R).
\end{equation*}
\notag
$$
Hence
$$
\begin{equation*}
\begin{aligned} \, S&=\sum_{\substack{-x \leqslant n \leqslant x\\ R(n)\neq 0}} \biggl(\frac{|R(n)|}{\varphi(|R(n)|)}\biggr)^s\leqslant \sum_{\substack{-x_{0}(R) \leqslant n \leqslant x_{0}(R)\\ R(n)\neq 0}} \biggl(\frac{|R(n)|}{\varphi(|R(n)|)}\biggr)^s \\ &\leqslant (m(R))^s (2 x_{0}(R)+1)\leqslant \bigl(3x_{0}(R)m(R)\bigr)^s s!\, x= (c_{2}(R))^s s!\, x, \end{aligned}
\end{equation*}
\notag
$$
where $c_{2}(R)= 3x_{0}(R)m(R)$ is a positive constant depending only on $R$. If $\Omega = \varnothing$, then $S=0$. This proves the claim with $C(R)=\max (c_{1}(R), c_{2}(R))$. Corollary 1.1 is proved. Proof of Theorem 1.4. We assume that $x\geqslant c(\varepsilon)$, where $c(\varepsilon)$ is a positive constant depending only on $\varepsilon$; the constant (large enough) $c(\varepsilon)$ will be chosen laters.
Suppose that $\Omega:=\{-z \leqslant b\leqslant z\colon \Delta_{L}\neq 0\} \neq \varnothing$. Setting $\Delta (b):= \prod_{i=1}^{k} |b_i - b|$, we have
$$
\begin{equation*}
\frac{\Delta_{L}}{\varphi (\Delta_{L})}\leqslant \frac{a^{k+1} \Delta (b)}{\varphi(a^{k+1})\varphi (\Delta(b))}= \frac{a}{\varphi(a)}\, \frac{\Delta(b)}{\varphi(\Delta(b))}.
\end{equation*}
\notag
$$
Therefore,
$$
\begin{equation}
\sum_{b\in \Omega} \biggl(\frac{\Delta_{L}}{\varphi (\Delta_{L})}\biggr)^s \leqslant \biggl(\frac{a}{\varphi(a)}\biggr)^s \sum_{b\in \Omega} \biggl(\frac{\Delta (b)}{\varphi (\Delta (b))}\biggr)^s.
\end{equation}
\tag{3.15}
$$
To obtain an upper bound for the last sum in (3.15), we apply Theorem 1.1 with $\alpha=\varepsilon/4$.
We put
$$
\begin{equation*}
R(n)=(n-b_1)\cdots (n-b_k)=n^{k}+a_{k-1}n^{k-1}+\dots+ a_0.
\end{equation*}
\notag
$$
Given a prime $p$, we have
$$
\begin{equation*}
\omega(p)=\#\{b\in \Omega\colon \Delta(b)\equiv 0\ (\operatorname{mod}p)\} \leqslant \#\{-z \leqslant b \leqslant z\colon R(b)\equiv 0\ (\operatorname{mod}p)\}.
\end{equation*}
\notag
$$
The number of solutions of the congruence
$$
\begin{equation}
R(n)\equiv 0\quad (\operatorname{mod}p)
\end{equation}
\tag{3.16}
$$
is at most $k$, and it trivially does not exceed $p$. We obtain the number of solutions of congruence (3.16) is at most $\min (p,k)$. Let $m_1<\dots < m_t$ be all numbers from $\{1,\dots, p\}$, satisfying congruence (3.16) (in this case, $t\leqslant \min (p,k)$). Let $1 \leqslant j \leqslant t$. We have
$$
\begin{equation*}
\#\{-z\leqslant b \leqslant z\colon b\equiv m_j\ (\operatorname{mod} p)\} \leqslant \frac{2z}{p}+1.
\end{equation*}
\notag
$$
Hence
$$
\begin{equation}
\omega(p) \leqslant t \biggl(\frac{2z}{p}+1\biggr)\leqslant \min (p,k) \biggl(\frac{2z}{p}+1\biggr).
\end{equation}
\tag{3.17}
$$
Let $b\in \Omega$. Since
$$
\begin{equation*}
|b-b_i|\leqslant |b|+|b_i|\leqslant z+x\leqslant 2x
\end{equation*}
\notag
$$
for all $1 \leqslant i \leqslant k$, we obtain $|R(b)| \leqslant (2x)^{k}=:M$.
There are two cases to consider.
1) Let $k\geqslant \ln x$. We may assume that $c(\varepsilon) \geqslant 30$, and therefore, $x \geqslant 30$. We see that $(2x)^{l}+2\leqslant (3x)^{l}$ for any positive integer $l$. we also have $\ln\ln (3t)\leqslant c_0 \ln\ln t$ for any $t\geqslant 30$, where $c_0$ is a positive absolute constant. Let $b\in \Omega$. Then
$$
\begin{equation*}
\begin{aligned} \, \frac{\Delta(b)}{\varphi(\Delta(b))}&=\frac{|R(b)|}{\varphi(|R(b)|)}\leqslant c_{1}\ln\ln(|R(b)|+2)\leqslant c_{1}\ln\ln\bigl((2x)^{k}+2\bigr) \leqslant c_{1}\ln\ln\bigl((3x)^{k}\bigr) \\ &=c_1\bigl(\ln k+ \ln\ln (3x)\bigr)\leqslant c_1(\ln k+ c_0 \ln\ln x) \leqslant c_1(\ln k+ c_0 \ln k)=c_2 \ln k, \end{aligned}
\end{equation*}
\notag
$$
where $c_1$, $c_2= c_1 (1+c_0)$ are positive absolute constants. Noting that $z \geqslant (\ln x)^{\varepsilon}\geqslant 1$, we have
$$
\begin{equation*}
\#\Omega \leqslant 2z+1\leqslant 3z.
\end{equation*}
\notag
$$
Hence
$$
\begin{equation*}
\sum_{b\in \Omega} \biggl(\frac{\Delta(b)}{\varphi(\Delta (b))}\biggr)^s \leqslant (c_2 \ln k)^s\#\Omega \leqslant (c_2 \ln k)^s 3 z.
\end{equation*}
\notag
$$
From (3.15) we obtain
$$
\begin{equation*}
\sum_{b\in \Omega} \biggl(\frac{\Delta_{L}}{\varphi(\Delta_{L})}\biggr)^s \leqslant \biggl(c \frac{a}{\varphi (a)} \ln k \biggr)^s z,
\end{equation*}
\notag
$$
where $c$ is a positive absolute constant.
2) Let $k < \ln x$. Let $c(\varepsilon)$ be such that $\ln (2t)\geqslant 2^{4/\varepsilon}$, $(\ln (2t)\ln t)^{\varepsilon/4}\leqslant (\ln t)^{\varepsilon}$ for any $t\geqslant c(\varepsilon)$. We have
$$
\begin{equation*}
\ln M = k \ln (2x) \geqslant \ln (2x)\geqslant 2^{4/\varepsilon}, \qquad (\ln M)^{\varepsilon/4}\leqslant \bigl(\ln (2x)\ln x\bigr)^{\varepsilon/4}\leqslant (\ln x)^{\varepsilon}\leqslant z.
\end{equation*}
\notag
$$
We see that $2\leqslant (\ln M)^{\varepsilon/4}\leqslant z$, and hence, $z/p \geqslant 1$ for any prime $p \leqslant (\ln M)^{\varepsilon/4}$. From (3.17) we obtain
$$
\begin{equation*}
\omega(p) \leqslant \min (p,k) \frac{3z}{p}
\end{equation*}
\notag
$$
for any prime $p \leqslant (\ln M)^{\varepsilon/4}$. Applying Theorem 1.1, we have
$$
\begin{equation*}
\begin{aligned} \, \sum_{b\in \Omega} \biggl(\frac{\Delta(b)}{\varphi(\Delta (b))}\biggr)^s&\leqslant (C(\varepsilon))^s \biggl(\#\Omega +\sum_{p\leqslant (\ln M)^{\varepsilon/4}} \frac{\omega(p)(\ln p)^s}{p}\biggr) \\ &\leqslant (C(\varepsilon))^s \biggl(3z +\sum_{p\leqslant (\ln M)^{\varepsilon/4}} \frac{3z \min (p,k) (\ln p)^s}{p^2}\biggr) \\ &\leqslant (C(\varepsilon))^s 3z \biggl(1 + \sum_{p} \frac{\min (p,k) (\ln p)^s}{p^2}\biggr). \end{aligned}
\end{equation*}
\notag
$$
By (3.14) we obtain
$$
\begin{equation*}
\sum_{b\in \Omega} \biggl(\frac{\Delta(b)}{\varphi(\Delta (b))}\biggr)^s \leqslant \biggl(C_{1}(\varepsilon) \ln (k+1)\biggr)^s s!\, z,
\end{equation*}
\notag
$$
where $C_{1}(\varepsilon) >0$ is a constant depending only on $\varepsilon$. From (3.15) we obtain
$$
\begin{equation*}
\sum_{b\in \Omega} \biggl(\frac{\Delta_{L}}{\varphi(\Delta_{L})}\biggr)^s\leqslant \biggl(C_{1}(\varepsilon) \frac{a}{\varphi (a)} \ln (k+1)\biggr)^s s!\, z.
\end{equation*}
\notag
$$
This proves Theorem 1.4 in the case $x\geqslant c(\varepsilon)$.
Let $3 \leqslant x < c(\varepsilon)$. Given $b\in \Omega$, we have
$$
\begin{equation*}
|b - b_i| \leqslant |b|+|b_i| \leqslant z + x\leqslant 2x \leqslant 2 c(\varepsilon)
\end{equation*}
\notag
$$
for all $1 \leqslant i \leqslant k$ and hence, $\Delta (b)\leqslant (2 c(\varepsilon))^{k}$. We obtain
$$
\begin{equation*}
\begin{aligned} \, \frac{\Delta (b)}{\varphi (\Delta (b))} &\leqslant c \ln\ln \bigl(\Delta (b) + 2\bigr)\leqslant c \ln\ln \bigl((2 c(\varepsilon))^{k} + 2\bigr)\leqslant c \ln\ln \bigl((3 c(\varepsilon))^{k}\bigr) \\ &= c \bigl(\ln k+ \ln\ln (3 c(\varepsilon))\bigr)\leqslant c\bigl(\ln (k+1) + 2\ln\ln (3 c(\varepsilon)) \ln (k+1)\bigr) \\ &= c_{1}(\varepsilon) \ln (k+1). \end{aligned}
\end{equation*}
\notag
$$
As a result, we have
$$
\begin{equation*}
\sum_{b\in \Omega} \biggl(\frac{\Delta (b)}{\varphi (\Delta (b))}\biggr)^s \leqslant \bigl(c_{1}(\varepsilon) \ln (k+1)\bigr)^s\#\Omega .
\end{equation*}
\notag
$$
Consequently,
$$
\begin{equation*}
\# \Omega \leqslant 2z+1\leqslant 2x+1\leqslant 2 c(\varepsilon)+1\leqslant 3 c(\varepsilon).
\end{equation*}
\notag
$$
Since $z \geqslant (\ln x)^{\varepsilon}$ and $x \geqslant 3$, we have $z\geqslant 1$, and so
$$
\begin{equation*}
\begin{aligned} \, \sum_{b\in \Omega} \biggl(\frac{\Delta (b)}{\varphi (\Delta (b))}\biggr)^s &\leqslant \bigl(c_{1}(\varepsilon) \ln (k+1)\bigr)^s 3 c(\varepsilon) z\leqslant \bigl(c_{1}(\varepsilon) 3 c(\varepsilon) \ln (k+1)\bigr)^s z \\ &= \bigl(c_{2}(\varepsilon) \ln (k+1)\bigr)^s z\leqslant \bigl(c_{2}(\varepsilon) \ln (k+1)\bigr)^s s!\, z, \end{aligned}
\end{equation*}
\notag
$$
where $c_{2}(\varepsilon) >0$ is a constant depending only on $\varepsilon$. From (3.15), we obtain
$$
\begin{equation*}
\sum_{b\in \Omega} \biggl(\frac{\Delta_{L}}{\varphi(\Delta_{L})}\biggr)^s\leqslant \biggl(c_{2}(\varepsilon) \frac{a}{\varphi (a)} \ln (k+1)\biggr)^s s!\, z.
\end{equation*}
\notag
$$
Now the claim follows with $C(\varepsilon)= \max(C_{1}(\varepsilon), c_{2}(\varepsilon))$. Theorem 1.4 is proved. Proof of Theorem 1.5. Given an integer $a$ and a prime $p$, the congruence $y^{2}\equiv a\ (\operatorname{mod} p)$ has at most $2$ solutions, and hence
$$
\begin{equation}
1 \leqslant \#E(\mathbb{F}_{p})\leqslant 1+ 2p
\end{equation}
\tag{3.18}
$$
(the first inequality follows from the fact that at least $\mathcal{O}\in E(\mathbb{F}_{p})$). We have
$$
\begin{equation*}
\frac{\#E(\mathbb{F}_{p})}{\varphi(\#E(\mathbb{F}_{p}))}\geqslant 1
\end{equation*}
\notag
$$
for any prime $p$, and therefore, the first inequality in (1.3) is trivial.
Let us prove the second inequality in (1.3). We use the following result of David and Wu (Theorem 2.3, (i) in [6]). Suppose that an elliptic curve $E$ does not have complex multiplication. Let $a$ and $t\geqslant 1 $ be integers. Then
$$
\begin{equation*}
\#\{p\leqslant x\colon \#E(\mathbb{F}_{p})\equiv a\ (\operatorname{mod} t)\}\leqslant C(E) \biggl(\frac{\pi(x)}{\varphi (t)}+ x\exp(-b t^{-2} \sqrt{\ln x}\,)\biggr)
\end{equation*}
\notag
$$
for $\ln x \geqslant c t^{12} \ln t$. Here, $b$ and $c$ are positive absolute constants, and $C(E)>0$ is a constant depending only on $E$.
We assume that $x \geqslant c_0 (s)$, where $c_0 (s)>0$ is a constant depending only on $s$; the (sufficiently large) constant $c_0 (s)$ will be chosen later. Given a positive integer $t$, we have $t^{12}\ln t \leqslant t^{13}$. Therefore,
$$
\begin{equation}
\#\{p\leqslant x\colon \#E(\mathbb{F}_{p})\equiv a\ (\operatorname{mod} t)\}\leqslant C(E) \biggl(\frac{\pi(x)}{\varphi (t)}+ x\exp(-b t^{-2} \sqrt{\ln x}\,)\biggr)
\end{equation}
\tag{3.19}
$$
for $1 \leqslant t \leqslant (c_1 \ln x)^{1/13}$, where $c_1=1/c$ is a positive absolute constant. We see from (3.18) that $\#E(\mathbb{F}_{p})\leqslant 3p$ for any prime $p$. We put $M=3x$. Hence $\#E(\mathbb{F}_{p})\leqslant M$ for any prime $p\leqslant x$. We have
$$
\begin{equation}
2 \leqslant (\ln M)^{1/26}\leqslant (c_1 \ln x)^{1/13}
\end{equation}
\tag{3.20}
$$
for sufficiently large $c_0(s)$.
Applying Theorem 1.1 with $\alpha=1/26$, we have
$$
\begin{equation}
\sum_{p\leqslant x} \biggl(\frac{\#E(\mathbb{F}_{p})} {\varphi(\#E(\mathbb{F}_{p}))}\biggr)^s\leqslant c^s\biggl(\pi(x)+ \sum_{q \leqslant (\ln M)^{1/26}} \frac{\omega(q) (\ln q)^s}{q}\biggr),
\end{equation}
\tag{3.21}
$$
where $c$ is a positive absolute constant, and
$$
\begin{equation*}
\omega (q) = \#\{p\leqslant x\colon \#E(\mathbb{F}_{p})\equiv 0\ (\operatorname{mod} q)\}.
\end{equation*}
\notag
$$
It follows from (3.19) (with $a=0$) and (3.20) that
$$
\begin{equation*}
\omega (q) \leqslant C(E) \biggl(\frac{\pi(x)}{\varphi (q)}+ x \exp(-b q^{-2} \sqrt{\ln x}\,) \biggr)
\end{equation*}
\notag
$$
for any prime $q \leqslant (\ln M)^{1/26}$. Hence
$$
\begin{equation}
\begin{aligned} \, &\sum_{q \leqslant (\ln M)^{1/26}} \frac{\omega(q) (\ln q)^s}{q} \notag \\ &\qquad\leqslant C(E) \biggl(\pi(x)\sum_{q \leqslant (\ln M)^{1/26}} \frac{(\ln q)^s}{q\varphi (q)}+x\sum_{q \leqslant (\ln M)^{1/26}} \frac{ (\ln q)^s}{q\exp(b q^{-2} \sqrt{\ln x}\,)}\biggr). \end{aligned}
\end{equation}
\tag{3.22}
$$
Since $\varphi(n) \geqslant c n/\ln\ln (n+2)$ for any positive integer $n$, where $c$ is a positive absolute constant, we have
$$
\begin{equation}
\begin{aligned} \, \sum_{q \leqslant (\ln M)^{1/26}}\frac{(\ln q)^s}{q\varphi (q)}&\leqslant \frac{1}{c} \sum_{q \leqslant (\ln M)^{1/26}}\frac{(\ln q)^s\ln\ln(q+2)}{q^{2}} \notag \\ &\leqslant \frac{1}{c}\sum_{n=1}^{\infty}\frac{(\ln n)^s\ln\ln(n+2)}{n^{2}}= c_{1}(s), \end{aligned}
\end{equation}
\tag{3.23}
$$
where $c_{1}(s)>0$ is a constant depending only on $s$.
Recall that $M=3x$. We have $(\ln (3x))^{1/13}\leqslant 2 (\ln x)^{1/13}$ if $c_{0}(s)$ is large enough. Hence
$$
\begin{equation*}
b\frac{\sqrt{\ln x}}{q^{2}}\geqslant b\, \frac{(\ln x)^{1/2}}{(\ln (3x))^{1/13}} \geqslant \frac{b}{2}\, \frac{(\ln x)^{1/2}}{(\ln x)^{1/13}}=b_{1} (\ln x)^{11/26}
\end{equation*}
\notag
$$
for any prime $q\leqslant (\ln (3x))^{1/26}$, where $b_{1}=b/2$ is a positive absolute constant. We obtain
$$
\begin{equation*}
x\sum_{q \leqslant (\ln M)^{1/26}}\frac{ (\ln q)^s}{q\exp(b q^{-2} \sqrt{\ln x}\,)} \leqslant x\exp\bigl(-b_{1} (\ln x)^{11/26}\bigr)\sum_{q \leqslant (\ln M)^{1/26}}\frac{(\ln q)^s}{q}.
\end{equation*}
\notag
$$
Putting $k=[(\ln(3x))^{1/26}]$ and applying Lemma 3.5, we obtain
$$
\begin{equation*}
\begin{aligned} \, \sum_{q \leqslant (\ln M)^{1/26}}\frac{ (\ln q)^s}{q} &= \sum_{q \leqslant k} \frac{ (\ln q)^s}{q} \leqslant c (\ln k)^s\leqslant c \bigl(\ln \bigl((\ln(3x))^{1/26}\bigr)\bigr)^s \\ &=\frac{c}{(26)^s}\bigl(\ln\ln (3x)\bigr)^s, \end{aligned}
\end{equation*}
\notag
$$
where $c$ is a positive absolute constant. We obtain
$$
\begin{equation*}
x\sum_{q \leqslant (\ln M)^{1/26}}\frac{ (\ln q)^s}{q\exp(b q^{-2} \sqrt{\ln x}\,)}\leqslant \frac{c}{(26)^s}\, x \exp\bigl(-b_{1} (\ln x)^{11/26}\bigr)\bigl(\ln\ln (3x)\bigr)^s.
\end{equation*}
\notag
$$
We have $\pi(t) \geqslant at/\ln t$ for any real number $t\geqslant 2$, where $a$ is a positive absolute constant. Let us show that
$$
\begin{equation}
\frac{c}{(26)^s}x \exp\bigl(-b_{1} (\ln x)^{11/26}\bigr) \bigl(\ln\ln (3x)\bigr)^s \leqslant \frac{a x}{(26)^s\ln x}.
\end{equation}
\tag{3.24}
$$
The inequality (3.24) is equivalent to the inequality
$$
\begin{equation*}
c \ln x\bigl(\ln\ln (3x)\bigr)^s\leqslant a\exp\bigl(b_{1} (\ln x)^{11/26}\bigr).
\end{equation*}
\notag
$$
Taking logarithms, we obtain
$$
\begin{equation*}
\ln c + \ln\ln x + s \ln\ln\ln (3x)\leqslant \ln a+ b_{1} (\ln x)^{11/26}.
\end{equation*}
\notag
$$
This inequality holds if $c_{0}(s)$ is large enough. Inequality (3.24) is proved.
As a result, we have
$$
\begin{equation}
x\sum_{q \leqslant (\ln M)^{1/26}}\frac{(\ln q)^s}{q\exp(b q^{-2}\sqrt{\ln x}\,)} \leqslant \frac{\pi(x)}{(26)^s}.
\end{equation}
\tag{3.25}
$$
Substituting (3.23) and (3.25) into (3.22), we obtain
$$
\begin{equation}
\sum_{q \leqslant (\ln M)^{1/26}} \frac{\omega(q) (\ln q)^s}{q}\leqslant C(E) \biggl(c_{1}(s)+\frac{1}{(26)^s}\biggr)\pi(x).
\end{equation}
\tag{3.26}
$$
Substituting (3.26) into (3.21), we obtain
$$
\begin{equation*}
\sum_{p\leqslant x} \biggl(\frac{\#E(\mathbb{F}_{p})} {\varphi(\#E(\mathbb{F}_{p}))}\biggr)^s\leqslant c^s\biggl(1+ C(E) \biggl(c_{1}(s)+\frac{1}{(26)^s}\biggr) \biggr)\pi (x) = C_{1}(E,s) \pi(x),
\end{equation*}
\notag
$$
where $C_{1}(E,s)>0$ is a constant depending only on $E$ and $s$. This proves Theorem 1.5 in the case $x\geqslant c_{0}(s)$.
Suppose that $2 \leqslant x < c_{0}(s)$. For any prime $p\leqslant x$, we have
$$
\begin{equation*}
\#E(\mathbb{F}_{p}) \leqslant 3 p\leqslant 3 x\leqslant 3 c_{0}(s)=c_{2}(s).
\end{equation*}
\notag
$$
Hence, for any prime $p\leqslant x$,
$$
\begin{equation*}
\frac{\#E(\mathbb{F}_{p})}{\varphi(\#E(\mathbb{F}_{p}))}\leqslant \#E(\mathbb{F}_{p})\leqslant c_{2}(s).
\end{equation*}
\notag
$$
As a result, we have
$$
\begin{equation*}
\sum_{p\leqslant x} \biggl(\frac{\#E(\mathbb{F}_{p})} {\varphi(\#E(\mathbb{F}_{p}))}\biggr)^s\leqslant (c_{2}(s))^s \pi (x) = c_{3}(s) \pi (x),
\end{equation*}
\notag
$$
where $c_{3}(s)>0$ is a constant depending only on $s$. The required claim follows with $C(E,s)=\max (C_{1}(E,s), c_{3}(s))$. Theorem 1.5 is proved. Proof of Theorem 1.6. Our proof consists of three steps.
1. Let us fin an obtain an upper bound for
$$
\begin{equation*}
\sum_{n\leqslant x} (r(n))^{2}.
\end{equation*}
\notag
$$
Let $x\geqslant x_0$. Since $\operatorname{ord}_{A}(s)<+\infty$, for any positive integer $s$, we have $0\leqslant r(n)< +\infty$ for any positive integer $n$. Since
$$
\begin{equation*}
N_{A}(x)=\sum_{n\leqslant x}\operatorname{ord}_{A}(n),
\end{equation*}
\notag
$$
we have $N_{A}(x)<+\infty$. By the assumption of the theorem, $N_{A}(x)>0$. Hence $0< N_{A}(x)<+\infty$. Since $N_{A}(x)>0$, there is a positive integer $n\leqslant x$ such that $\operatorname{ord}_{A}(n)>0$. Hence
$$
\begin{equation*}
0<\rho_{A}(x):= \max_{n\leqslant x}\operatorname{ord}_{A}(n)<+\infty.
\end{equation*}
\notag
$$
It can be shown that
$$
\begin{equation*}
\sum_{n\leqslant x} (r(n))^{2} =\sum_{\substack{p_1, p_2\in \mathbb{P}\\ j, k\in \mathbb{N}:\\ p_1+a_j\leqslant x\\ p_2+a_k\leqslant x\\ p_1+a_j=p_2+a_k}} 1 = \sum_{\substack{\dots\\ p_1=p_2}}1+\sum_{\substack{\dots\\ p_1<p_2}}1+ \sum_{\substack{\dots\\ p_1>p_2}}1= T_1+ T_2 + T_3.
\end{equation*}
\notag
$$
It is easy to see that $T_2=T_3$. Let us estimate $T_1$. We have
$$
\begin{equation*}
T_1= \sum_{\substack{p_1\in \mathbb{P}:\\ p_1\leqslant x}}\, \sum_{\substack{j\in \mathbb{N}:\\ a_j\leqslant x-p_1 }}\, \sum_{\substack{k\in \mathbb{N}:\\ a_k=a_j}}1.
\end{equation*}
\notag
$$
Since
$$
\begin{equation*}
\sum_{\substack{k\in \mathbb{N}:\\ a_k=a_j}}1=\operatorname{ord}_{A}(a_j),
\end{equation*}
\notag
$$
we have
$$
\begin{equation*}
T_1\leqslant \sum_{\substack{p_1\in \mathbb{P}:\\ p_1\leqslant x}}\, \sum_{\substack{j\in \mathbb{N}:\\ a_j\leqslant x }} \operatorname{ord}_{A}(a_j)= \sum_{\substack{j\in \mathbb{N}:\\ a_j\leqslant x }} \operatorname{ord}_{A}(a_j) \sum_{\substack{p_1\in \mathbb{P}:\\ p_1\leqslant x}} 1= \pi(x)\sum_{\substack{j\in \mathbb{N}:\\ a_j\leqslant x }} \operatorname{ord}_{A}(a_j).
\end{equation*}
\notag
$$
Next, $a_j \leqslant x$, and hence $\operatorname{ord}_{A}(a_j)\leqslant \rho_{A}(x)$. Therefore,
$$
\begin{equation*}
\sum_{\substack{j\in \mathbb{N}:\\ a_j\leqslant x}} \operatorname{ord}_{A}(a_j)\leqslant \rho_{A}(x)\sum_{\substack{j\in \mathbb{N}:\\ a_j\leqslant x }}1= \rho_{A}(x) N_{A}(x).
\end{equation*}
\notag
$$
By Chebyshev’s theorem, $\pi(x)\leqslant b x/\ln x$, where $b>0$ is an absolute constant, and hence
$$
\begin{equation*}
T_1 \leqslant b\, \frac{x}{\ln x}\, \rho_{A}(x) N_{A}(x).
\end{equation*}
\notag
$$
Given $a \in \mathbb{N}$ we set
$$
\begin{equation*}
\pi_{2}(x, a)=\#\{p\leqslant x\colon p+a\text{ is a prime}\}.
\end{equation*}
\notag
$$
Now let us employ the following Schnirelmann’ result [ 7]. Let $a$ be a positive integer, and let $x\geqslant 4$ be a real number. Then
$$
\begin{equation*}
\pi_{2}(x, a)\leqslant c\,\frac{x}{(\ln x)^2}\, \frac{a}{\varphi(a)},
\end{equation*}
\notag
$$
where $c>0$ is an absolute constant. Let us estimate $T_2$. We have
$$
\begin{equation*}
\begin{aligned} \, T_2&= \sum_{\substack{p_1, p_2\in \mathbb{P}\\ j, k\in \mathbb{N}:\\ p_1+a_j\leqslant x\\ p_2+a_k\leqslant x\\ p_1+a_j=p_2+a_k\\ p_1<p_2}}1 \leqslant \sum_{\substack{j, k\in \mathbb{N}:\\ a_k < a_j\leqslant x}} \sum_{\substack{p\in \mathbb{P}:\\p\leqslant x\\ p+a_j-a_k\text{ is a prime}}}1 = \sum_{\substack{j, k\in \mathbb{N}:\\ a_k < a_j\leqslant x}}\pi_{2}(x, a_j - a_k) \\ &\leqslant c\,\frac{x}{(\ln x)^2}\sum_{\substack{j, k\in \mathbb{N}:\\ a_k < a_j\leqslant x}}\frac{a_j - a_k}{\varphi(a_j - a_k)} = c\,\frac{x}{(\ln x)^2}\sum_{\substack{k\in \mathbb{N}:\\ a_k < x}} \sum_{\substack{j\in \mathbb{N}:\\ a_k < a_j\leqslant x}} \frac{a_j - a_k}{\varphi(a_j - a_k)}. \end{aligned}
\end{equation*}
\notag
$$
We fix a positive integer $k$ with $a_k < x$. Let $j$ be a positive integer such that $a_k < a_j\leqslant x$. Then $0< a_j - a_k\leqslant x$. Applying Theorem 1.1 with $s=1$, $M=x$ and $\alpha$ from the assumption of the theorem, we obtain
$$
\begin{equation*}
\sum_{\substack{j\in \mathbb{N}:\\ a_k < a_j\leqslant x}} \frac{a_j - a_k}{\varphi(a_j - a_k)}\leqslant C(\alpha) \biggl(l+\sum_{p\leqslant (\ln x)^{\alpha}}\frac{\omega(p) \ln p}{p}\biggr),
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
l=\#\{j\in \mathbb{N}\colon a_k<a_j\leqslant x\}\leqslant \#\{j\in \mathbb{N} \colon a_j\leqslant x\}=N_{A}(x)
\end{equation*}
\notag
$$
and
$$
\begin{equation*}
\omega(p)=\#\{j\in \mathbb{N}\colon a_k<a_j\leqslant x\text{ and }a_j\equiv a_k\ (\operatorname{mod} p)\}.
\end{equation*}
\notag
$$
Hence
$$
\begin{equation*}
\begin{aligned} \, &\sum_{\substack{j\in \mathbb{N}:\\ a_k < a_j\leqslant x}} \frac{a_j - a_k}{\varphi(a_j - a_k)} \\ &\quad\leqslant C(\alpha)\biggl(N_{A}(x)+\sum_{p\leqslant (\ln x)^{\alpha}} \frac{\#\{j\in \mathbb{N}\colon a_k<a_j\leqslant x\text{ and } a_j\equiv a_k\ (\operatorname{mod} p)\} \ln p}{p}\biggr). \end{aligned}
\end{equation*}
\notag
$$
As a result,
$$
\begin{equation*}
\begin{aligned} \, T_2 &\leqslant c\,\frac{x}{(\ln x)^2}\sum_{\substack{k\in \mathbb{N}:\\ a_k < x}}C(\alpha)\biggl(N_{A}(x) \\ &\qquad +\sum_{p\leqslant (\ln x)^{\alpha}}\frac{\#\{j\in \mathbb{N} \colon a_k<a_j\leqslant x\text{ and }a_j\equiv a_k\ (\operatorname{mod} p)\} \ln p}{p}\biggr) \\ &\leqslant c C(\alpha)\,\frac{x}{(\ln x)^2}(N_{A}(x))^{2}+ c C(\alpha)\,\frac{x}{(\ln x)^2} \\ &\qquad\times \sum_{\substack{k\in \mathbb{N}:\\ a_k < x}}\, \sum_{p\leqslant (\ln x)^{\alpha}}\frac{\#\{j\in \mathbb{N}\colon a_k<a_j\leqslant x\text{ and }a_j\equiv a_k\ (\operatorname{mod} p)\}\ln p}{p}. \end{aligned}
\end{equation*}
\notag
$$
By the assumption of the theorem,
$$
\begin{equation*}
\sum_{\substack{k\in \mathbb{N}:\\ a_k < x}}\, \sum_{p\leqslant (\ln x)^{\alpha}} \frac{\#\{j\in \mathbb{N}\colon a_k<a_j\leqslant x\text{ and }a_j\equiv a_k\ (\operatorname{mod} p)\} \ln p}{p}\leqslant \gamma_{2} (N_{A}(x))^{2}.
\end{equation*}
\notag
$$
Now we have
$$
\begin{equation*}
T_2\leqslant c_{0}(\gamma_2, \alpha)\,\frac{x}{(\ln x)^2}\, (N_{A}(x))^{2},
\end{equation*}
\notag
$$
where $c_{0}(\gamma_2,\alpha)>0$ is a constant depending only on $\gamma_2$ and $\alpha$.
We obtain
$$
\begin{equation*}
\begin{aligned} \, \sum_{n\leqslant x} \bigl(r(n)\bigr)^{2}&= T_1+T_2+T_3=T_1+2T_2 \\ &\leqslant b\, \frac{x}{\ln x}\, \rho_{A}(x) N_{A}(x) + 2c_{0}(\gamma_2, \alpha)\,\frac{x}{(\ln x)^2}\, (N_{A}(x))^{2} \\ &\leqslant c(\gamma_2, \alpha)\,\frac{x}{(\ln x)^2}\, N_{A}(x) \bigl(\rho_{A}(x)\ln x+ N_{A}(x)\bigr), \end{aligned}
\end{equation*}
\notag
$$
where $c(\gamma_2, \alpha)=b+2c_{0}(\gamma_2, \alpha)>0$ is a constant depending only on $\gamma_2$ and $\alpha$.
2. Let us obtain a lower bound for
$$
\begin{equation*}
\sum_{\substack{n\leqslant x:\\ r(n)\geqslant b_1 \gamma_1 (N_{A}(x)/\ln x)}} r(n),
\end{equation*}
\notag
$$
where $b_1>0$ is some absolute constant, which will be defined later.
By the assumption of the theorem $N_{A}(x/2)\geqslant \gamma_1 N_{A}(x)>0$. We also have $N_{A}(x/2)<+\infty$. Hence $0< N_{A}(x/2)<+\infty$. Since $x\geqslant x_0\geqslant 10$, we have
$$
\begin{equation*}
\pi(x/2)\geqslant b\,\frac{x/2}{\ln x/2}\geqslant\frac{b}{2}\,\frac{x}{\ln x}= b_0\, \frac{x}{\ln x},
\end{equation*}
\notag
$$
where $b_0>0$ is an absolute constant.
Next,
$$
\begin{equation*}
\sum_{n\leqslant x} r(n)\geqslant \pi\biggl(\frac{x}2\biggr) N_{A}\biggl(\frac{x}2\biggr)\geqslant b_{0}\gamma_{1}\, \frac{x}{\ln x}\, N_{A}(x),
\end{equation*}
\notag
$$
and so,
$$
\begin{equation*}
\begin{aligned} \, \sum_{\substack{n\leqslant x:\\ r(n)< (b_{0}\gamma_{1}N_{A}(x))/ (2\ln x)}} r(n) &< \frac{b_{0}\gamma_{1}}{2}\, \frac{N_{A}(x)}{\ln x} \sum_{\substack{n\leqslant x:\\ r(n)< (b_{0}\gamma_{1}N_{A}(x))/ (2\ln x)}} 1 \\ &\leqslant \frac{b_{0}\gamma_{1}}{2}\, \frac{N_{A}(x)}{\ln x} \sum_{n\leqslant x} 1 \leqslant \frac{b_{0}\gamma_{1}}{2}\, \frac{x}{\ln x}\, N_{A}(x). \end{aligned}
\end{equation*}
\notag
$$
Therefore,
$$
\begin{equation*}
\begin{aligned} \, \sum_{\substack{n\leqslant x:\\ r(n)\geqslant (b_{0}\gamma_{1}N_{A}(x))/ (2\ln x)}} r(n) &= \sum_{n\leqslant x} r(n) - \sum_{\substack{n\leqslant x:\\ r(n)< (b_{0}\gamma_{1}N_{A}(x))/ (2\ln x)}} r(n) \\ &\geqslant \frac{b_{0}\gamma_{1}}{2}\, \frac{x}{\ln x}\, N_{A}(x). \end{aligned}
\end{equation*}
\notag
$$
We set $b_1=b_{0}/2$. Then $b_1>0$ is an absolute constant, and
$$
\begin{equation*}
\sum_{\substack{n\leqslant x:\\ r(n)\geqslant b_1\gamma_1 (N_{A}(x)/\ln x)}} r(n) \geqslant b_1 \gamma_1 \,\frac{x}{\ln x}\, N_{A}(x).
\end{equation*}
\notag
$$
3. Applying the Cauchy–Schwarz inequality, we have
$$
\begin{equation*}
\begin{aligned} \, &\biggl(b_1 \gamma_1 \,\frac{x}{\ln x}\, N_{A}(x)\biggr)^2 \leqslant \Biggl(\sum_{\substack{n\leqslant x:\\ r(n)\geqslant b_1\gamma_1 (N_{A}(x)/\ln x)}} r(n)\Biggr)^{2} \\ &\leqslant \sum_{\substack{n\leqslant x:\\ r(n)\geqslant b_1\gamma_1 (N_{A}(x)/\ln x)}} 1 \, \sum_{\substack{n\leqslant x:\\ r(n)\geqslant b_1\gamma_1 (N_{A}(x)/\ln x)}} (r(n))^{2} \\ &\leqslant \sum_{\substack{n\leqslant x:\\ r(n)\geqslant b_1\gamma_1 (N_{A}(x)/\ln x)}} 1\, \sum_{n\leqslant x} (r(n))^{2} \\ &\leqslant \Biggl(\sum_{\substack{n\leqslant x:\\ r(n)\geqslant b_1\gamma_1 (N_{A}(x)/\ln x)}} 1\Biggr) c(\gamma_2, \alpha)\, \frac{x}{(\ln x)^2}\, N_{A}(x)\bigl(\rho_{A}(x)\ln x+ N_{A}(x)\bigr). \end{aligned}
\end{equation*}
\notag
$$
Therefore,
$$
\begin{equation*}
\sum_{\substack{n\leqslant x:\\ r(n)\geqslant b_1\gamma_1 (N_{A}(x)/\ln x)}} 1\geqslant \frac{(b_1 \gamma_1)^2}{c(\gamma_2, \alpha)}\,x\,\frac{N_{A}(x)}{N_{A}(x)+ \rho_{A}(x)\ln x}.
\end{equation*}
\notag
$$
We put
$$
\begin{equation*}
c_1= b_1\gamma_1,\qquad c_2= \frac{(b_1 \gamma_1)^2}{c(\gamma_2, \alpha)}.
\end{equation*}
\notag
$$
Then $c_1$ and $c_2$ are positive constants depending only on $\gamma_1$ and $\gamma_1$, $\gamma_2$, $\alpha$, respectively, and
$$
\begin{equation*}
\#\biggl\{1\leqslant n \leqslant x\colon r(n)\geqslant c_1 \frac{N_{A}(x)}{\ln x}\biggr\} \geqslant c_2 x\,\frac{N_{A}(x)}{N_{A}(x)+\rho_{A}(x)\ln x}.
\end{equation*}
\notag
$$
Theorem 1.6 is proved. Proof of Theorem 1.7. We will apply Theorem 1.6. We set
$$
\begin{equation*}
\Omega = \{n\in \mathbb{N}\colon R(n)>0\},\qquad A= \{R(n)\colon n\in \Omega\}.
\end{equation*}
\notag
$$
Given a positive integer $m$, we have
$$
\begin{equation*}
\operatorname{ord}_{A}(m)=\#\{n\in \Omega\colon R(n)=m\}\leqslant k.
\end{equation*}
\notag
$$
In particular, $\operatorname{ord}_{A}(m) <+\infty$ for any positive integer $m$, and
$$
\begin{equation*}
\rho_{A}(t)= \max_{n\leqslant t} \operatorname{ord}_{A}(n) \leqslant k
\end{equation*}
\notag
$$
for any real number $t\geqslant 1$.
There is a positive integer $N_{0}$ depending only on the polynomial $R$ such that
$$
\begin{equation*}
-\frac{a_{k}}{2} t^{k} \leqslant a_{k-1}t^{k-1}+\dots+a_{0}\leqslant \frac{a_{k}}{2} t^{k}
\end{equation*}
\notag
$$
and, for any real number $t \geqslant N_{0}$,
$$
\begin{equation*}
R'(t)=k a_k t^{k-1}+ (k-1)a_{k-1}t^{k-2}+\dots + a_1> 0.
\end{equation*}
\notag
$$
Hence $(a_{k}/2) n^{k} \leqslant R(n) \leqslant 2 a_{k} n^{k}$ and $R(n)< R(n+ 1)$ for any integer $n \geqslant N_{0}$. We put
$$
\begin{equation*}
\widetilde{M}_{2}=\max_{\substack{n\in \mathbb{N}:\\ n\leqslant N_{0}}} R(n).
\end{equation*}
\notag
$$
It is clear that $\widetilde{M}_{2}$ is a positive constant depending only on $R$, and
$$
\begin{equation*}
R(n)\leqslant \widetilde{M}_{2}\leqslant \widetilde{M}_{2} n^{k}
\end{equation*}
\notag
$$
for any integer $n$ such that $n\in \Omega$ and $n\leqslant N_{0}$. Therefore,
$$
\begin{equation*}
R(n) \leqslant \max(\widetilde{M}_{2}, 2a_{k})n^{k} = M_{2} n^{k}
\end{equation*}
\notag
$$
for any $n\in \Omega$.
Setting
$$
\begin{equation*}
\widetilde{M}_{1}= \frac{1}{(N_{0})^{k}},
\end{equation*}
\notag
$$
we have
$$
\begin{equation*}
\widetilde{M}_{1} n^{k} \leqslant \widetilde{M}_{1} (N_{0})^{k}=1 \leqslant R(n)
\end{equation*}
\notag
$$
for any integer $n$ such that $n\in \Omega$ and $n \leqslant N_{0}$. Hence
$$
\begin{equation*}
R(n) \geqslant \min \biggl(\widetilde{M}_{1}, \frac{a_{k}}{2}\biggr) n^{k}= M_{1} n^{k}
\end{equation*}
\notag
$$
for any $n\in \Omega$. As a result, we have
$$
\begin{equation}
M_{1} n^{k} \leqslant R(n) \leqslant M_{2} n^{k}
\end{equation}
\tag{3.27}
$$
for any $n\in \Omega$, where $M_{1}$ and $M_{2}$ are positive constants depending only on $R$.
We have
$$
\begin{equation}
\Omega= \{n_1,\dots, n_{T}, N_{0}, N_{0}+1,\dots\},
\end{equation}
\tag{3.28}
$$
where $n_{1}, \dots, n_{T}$ are positive integers with $n_{1}<\dots < n_{T}< N_{0}$. We may assume that $T>0$. It is clear that $T$ is a positive constant depending only on $R$.
We assume that $x \geqslant x_{0}$, where $x_{0}$ is a positive constant depending only on $R$; the (sufficiently large) constant $x_{0}$ will be chosen later. Let $x_{0} \geqslant M_{2} (N_{0})^{k}$. Applying (3.27), we have
$$
\begin{equation*}
\begin{aligned} \, N_{A}(x)&=\#\{n\in \Omega\colon R(n)\leqslant x\}\leqslant \#\{n\in \Omega\colon M_{1} n^{k}\leqslant x\} \\ &\leqslant \#\biggl\{n\in \mathbb{N}\colon n\leqslant \biggl(\frac{x}{M_{1}}\biggr)^{1/k}\biggr\}= \biggl[\biggl(\frac{x}{M_{1}}\biggr)^{1/k}\biggr]\leqslant \biggl(\frac{x}{M_{1}}\biggr)^{1/k}. \end{aligned}
\end{equation*}
\notag
$$
Let $x_1 = M_{2} (2N_{0}+1)^{k}$. Then $x_{1}$ is a positive constant depending only on $R$. Let $t$ be a real number such that $t \geqslant x_{1}$. Applying (3.27) and (3.28), we have
$$
\begin{equation}
\begin{aligned} \, N_{A}(t)&= \#\{n\in \Omega\colon R(n)\leqslant t\}\geqslant \#\{n\in \Omega\colon M_{2}n^{k}\leqslant t\} \notag \\ &= \#\biggl\{n\in \Omega\colon n\leqslant \biggl(\frac{t}{M_{2}}\biggr)^{1/k}\biggr\}\geqslant \biggl[\biggl(\frac{t}{M_{2}}\biggr)^{1/k}\biggr] - N_{0}+1 \notag \\ &\geqslant \biggl(\frac{t}{M_{2}}\biggr)^{1/k} - N_{0}\geqslant \frac{1}{2} \biggl(\frac{t}{M_{2}}\biggr)^{1/k}. \end{aligned}
\end{equation}
\tag{3.29}
$$
Let $x_{0} \geqslant 2x_1$. Then
$$
\begin{equation}
\frac{1}{2} \biggl(\frac{x}{M_{2}}\biggr)^{1/k} \leqslant N_{A}(x) \leqslant \biggl(\frac{x}{M_{1}}\biggr)^{1/k}.
\end{equation}
\tag{3.30}
$$
In particular, $N_{A}(x)>0$. Since $x/2 \geqslant x_{1}$, from (3.29) we have
$$
\begin{equation*}
N_{A}(x/2) \,{\geqslant}\, \frac{1}{2} \biggl(\frac{x/2}{M_{2}}\biggr)^{1/k} {=}\, \frac{1}{2} \biggl(\frac{M_{1}}{2M_{2}}\biggr)^{1/k} \biggl(\frac{x}{M_{1}}\biggr)^{1/k}{\geqslant}\, \frac{1}{2} \biggl(\frac{M_{1}}{2M_{2}}\biggr)^{1/k} N_{A}(x)\,{=}\, \gamma_{1} N_{A}(x),
\end{equation*}
\notag
$$
where $\gamma_{1}$ is a positive constant depending only on $R$. This proves (1.4) and (1.5).
We may assume that $x_{0}\geqslant R(N_{0})$. Then
$$
\begin{equation*}
\rho_{A}(x) = \max_{n\leqslant x} \operatorname{ord}_{A}(n)\geqslant \operatorname{ord}_{A}\bigl(R(N_{0})\bigr) \geqslant 1.
\end{equation*}
\notag
$$
Hence
$$
\begin{equation}
1 \leqslant \rho_{A}(x) \leqslant k .
\end{equation}
\tag{3.31}
$$
Let us consider the sum
$$
\begin{equation*}
S= \sum_{\substack{j\in \Omega:\\ R(j)< x}} \, \sum_{p\leqslant \ln x} \frac{\lambda (j, p)\ln p}{p},
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
\lambda (j, p)= \#\{n\in \Omega\colon R(j)< R(n)\leqslant x\text{ and }R(n) \equiv R(j)\ (\operatorname{mod} p)\}.
\end{equation*}
\notag
$$
We fix $j$ lying in the range of summation of the sum $S$. We have
$$
\begin{equation}
\sum_{p\leqslant \ln x} \frac{\lambda (j, p)\ln p}{p}= \sum_{\substack{p\leqslant \ln x\\ p \mid a_k}} \frac{\lambda (j, p)\ln p}{p}+ \sum_{\substack{p\leqslant \ln x\\ (p,a_k)=1}} \frac{\lambda (j, p)\ln p}{p}= S_{1}+ S_{2}.
\end{equation}
\tag{3.32}
$$
Let $p$ be in the range of summation of $S_{1}$. We have $\lambda (j,p) \leqslant N_{A}(x)$, and so
$$
\begin{equation}
\begin{aligned} \, S_{1} \leqslant N_{A}(x)\sum_{\substack{p\leqslant \ln x\\ p \mid a_k}} \frac{\ln p}{p}\leqslant \biggl(\sum_{p \mid a_k} \frac{\ln p}{p} + 1\biggr)N_{A}(x)= c_{1} N_{A}(x), \end{aligned}
\end{equation}
\tag{3.33}
$$
where $c_1$ is a positive constant depending only on $R$.
By Bertrand’s postulate (see, for example, Theorem 3.1.9 in [5]), there is a positive integer $n_0$ such that, for any integer $n \geqslant n_0$, any interval between $n$ and $2 n$ contains a prime. Hence there is a prime $p$, between $n_{0}\,{+}\,a_k$ and $2(n_{0}+a_k)$. We have $p> a_k$ and hence, $(p, a_k)=1$. We also have $\ln x > 2(n_{0}+a_k)$ if $x_0$ is sufficiently large. As a result, $\{p\colon p \leqslant \ln x$, $ (p,a_k)= 1\}\neq\varnothing$.
It can be assumed that (see (3.28))
$$
\begin{equation*}
x_{0}\geqslant \max \bigl(R(n_1),\dots, R(n_{T}), R(N_{0}),\dots, R(N_{0}+10)\bigr).
\end{equation*}
\notag
$$
We define
$$
\begin{equation*}
\Omega(x)= \{n\in \Omega\colon R(n)\leqslant x\}.
\end{equation*}
\notag
$$
Since $R(n)< R(n+1)$ for any integer $n \geqslant N_{0}$, we have
$$
\begin{equation}
\Omega(x)=\{n_{1},\dots, n_{T}, N_{0}, N_{0}+1,\dots, N_{0}+r\}.
\end{equation}
\tag{3.34}
$$
Let $p$ be in the range of summation of $S_{2}$. We define
$$
\begin{equation*}
U=\bigl\{b\in \{0,\dots, p-1\}\colon R(b)\equiv R(j) \ (\operatorname{mod}p)\bigr\}.
\end{equation*}
\notag
$$
Trivially, $\#U \leqslant p$. Since $(p,a_k)=1$, we have $\#U \leqslant k$. We obtain $\#U \leqslant \min (p,k)$. Note that if $b\in \{0,\dots, p-1\}$ is such that $b\equiv j\ (\operatorname{mod} p)$, then $b\in U$. Therefore,
$$
\begin{equation*}
1\leqslant \# U\leqslant \min (p,k).
\end{equation*}
\notag
$$
Given $b\in U$, we define
$$
\begin{equation*}
\Lambda (b)= \{ t\in \mathbb{Z}\colon b+pt\in \Omega(x)\}.
\end{equation*}
\notag
$$
Using (3.34), we have
$$
\begin{equation*}
\begin{aligned} \, \# \Lambda (b)&\leqslant T + \#\{t\in \mathbb{Z}\colon N_{0}\leqslant b+ pt\leqslant N_{0}+r\} \\ &= T + \biggl[\frac{N_{0}+r - b}{p}\biggr] - \biggl\lceil\frac{N_{0}-b}{p}\biggr\rceil + 1\leqslant \frac{r}{p}+ T+1. \end{aligned}
\end{equation*}
\notag
$$
Next,
$$
\begin{equation*}
r\leqslant \#\Omega(x) = N_{A}(x),
\end{equation*}
\notag
$$
and (see (3.30))
$$
\begin{equation*}
N_{A}(x) \geqslant \frac{1}{2} \biggl(\frac{x}{M_{2}}\biggr)^{1/k} \geqslant \ln x
\end{equation*}
\notag
$$
if $x_0$ is large enough. Since $p\leqslant \ln x$, we obtain $p \leqslant N_{A}(x)$. Therefore,
$$
\begin{equation*}
\# \Lambda (b)\leqslant \frac{N_{A}(x)}{p}+ T+1\leqslant \frac{N_{A}(x)}{p}+ (T+1)\frac{N_{A}(x)}{p} = (T+2)\frac{N_{A}(x)}{p}= c_2 \frac{N_{A}(x)}{p},
\end{equation*}
\notag
$$
where $c_2$ is a positive constant depending only on $R$.
We have
$$
\begin{equation*}
\lambda (j,p) \leqslant \sum_{b\in U} \# \Lambda (b)\leqslant c_2 \frac{N_{A}(x)}{p} \#U\leqslant c_2 k \frac{N_{A}(x)}{p} = c_3 \frac{N_{A}(x)}{p},
\end{equation*}
\notag
$$
where $c_3$ is a positive constant depending only on $R$, and hence
$$
\begin{equation}
S_2=\sum_{\substack{p\leqslant \ln x\\ (p,a_k)=1}} \frac{\lambda (j, p)\ln p}{p}\leqslant c_3 N_{A}(x) \sum_{\substack{p\leqslant \ln x\\ (p,a_k)=1}} \frac{\ln p}{p^{2}} \leqslant c_3 N_{A}(x) \sum_{p} \frac{\ln p}{p^{2}} = c_4 N_{A}(x),
\end{equation}
\tag{3.35}
$$
where $c_{4}$ is a positive constant depending only on $R$.
Substituting (3.33) and (3.35) into (3.32), we obtain
$$
\begin{equation*}
\sum_{p\leqslant \ln x} \frac{\lambda (j, p)\ln p}{p}\leqslant (c_1 + c_4) N_{A}(x) = \gamma_{2} N_{A}(x),
\end{equation*}
\notag
$$
where $\gamma_{2}$ is a positive constant depending only on $R$. We have
$$
\begin{equation*}
\sum_{\substack{j\in \Omega:\\ R(j)< x}} \sum_{p\leqslant \ln x} \frac{\lambda (j, p)\ln p}{p}\leqslant \gamma_{2} N_{A}(x) \sum_{\substack{j\in \Omega:\\ R(j)< x}} 1 \leqslant \gamma_{2} \bigl(N_{A}(x)\bigr)^{2}.
\end{equation*}
\notag
$$
As a result, (1.6) holds with $\alpha = 1$.
By Theorem 1.6, there are positive constants $c_{1}=c_{1}(\gamma_1)$ and $c_{2}=c_{2}(\gamma_1, \gamma_2, \alpha)$ such that
$$
\begin{equation*}
\#\biggl\{1\leqslant n \leqslant x\colon \widetilde{r}(n)\geqslant c_{1}\frac{N_{A}(x)}{\ln x}\biggr\}\geqslant c_{2}x\frac{N_{A}(x)}{N_{A}(x)+\rho_{A}(x)\ln x},
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
\widetilde{r}(n) = \#\{(p,j)\in \mathbb{P}\times \Omega\colon p+ R(j)=n\}.
\end{equation*}
\notag
$$
Since $\gamma_{1}$ and $\gamma_2$ are positive constants depending only on $R$, $\alpha\,{=}\,1$, the positive constants $c_1$ and $c_2$ depend only on $R$. Applying (3.30), we obtain
$$
\begin{equation*}
\#\biggl\{1\leqslant n \leqslant x\colon \widetilde{r}(n)\geqslant c_{1}\frac{N_{A}(x)}{\ln x}\biggr\}\leqslant \#\biggl\{1\leqslant n \leqslant x\colon \widetilde{r}(n)\geqslant \frac{c_{1}}{2 (M_{2})^{1/k}} \frac{x^{1/k}}{\ln x}\biggr\}.
\end{equation*}
\notag
$$
We put
$$
\begin{equation*}
r(n) = \#\{(p,j)\in \mathbb{P}\times\mathbb{N}\colon p+ R(j)=n\}.
\end{equation*}
\notag
$$
It is clear that $\widetilde{r}(n) \leqslant r(n)$ for any positive integer $n$. Hence
$$
\begin{equation*}
\#\biggl\{1\leqslant n \leqslant x\colon \widetilde{r}(n)\geqslant \frac{c_{1}}{2 (M_{2})^{1/k}}\frac{x^{1/k}}{\ln x}\biggr\}\leqslant \#\biggl\{1\leqslant n \leqslant x\colon r(n)\geqslant \frac{c_{1}}{2 (M_{2})^{1/k}}\,\frac{x^{1/k}}{\ln x}\biggr\}.
\end{equation*}
\notag
$$
We have (see (3.31))
$$
\begin{equation*}
0< \rho_{A}(x)\ln x\leqslant k \ln x \leqslant \frac{x^{1/k}}{2 (M_{2})^{1/k}}
\end{equation*}
\notag
$$
if $x_0$ is large enough. We have $0< \rho_{A}(x)\ln x\leqslant N_{A}(x)$, and so
$$
\begin{equation*}
\frac{N_{A}(x)}{N_{A}(x)+\rho_{A}(x)\ln x}\geqslant \frac{N_{A}(x)}{N_{A}(x)+ N_{A}(x)}=\frac{1}{2}.
\end{equation*}
\notag
$$
Next,
$$
\begin{equation*}
\#\biggl\{1\leqslant n \leqslant x\colon r(n)\geqslant \frac{c_{1}}{2 (M_{2})^{1/k}}\, \frac{x^{1/k}}{\ln x}\biggr\}\geqslant \frac{c_{2}}{2} x.
\end{equation*}
\notag
$$
We see that $c_1 / (2 (M_{2})^{1/k})$ and $c_2/2$ are positive constants depending only on $R$. Now it suffices to denote $c_1 / (2 (M_{2})^{1/k})$ by $c_1$ and write $c_2$ for $c_2/2$. Theorem 1.7 is proved. Proof of Corollary 1.2. We put $R(n)=n^{k}$. By Theorem 1.7, there are positive constants $c_{1}(k)$, $c_{2}(k)$ and $x_{0}(k)$ depending only on $k$ such that
$$
\begin{equation*}
\#\biggl\{1\leqslant n \leqslant x\colon r(n)\geqslant c_{1}(k)\frac{x^{1/k}}{\ln x}\biggr\}\geqslant c_{2}(k) x
\end{equation*}
\notag
$$
for any real number $x \geqslant x_{0}(k)$, where
$$
\begin{equation*}
r(n)=\#\{(p, j)\in \mathbb{P}\times\mathbb{N}\colon p+j^{k}=n\}.
\end{equation*}
\notag
$$
We put
$$
\begin{equation*}
\max_{4 \leqslant x \leqslant x_{0}(k)}\frac{x^{1/k}}{\ln x}=\alpha (k).
\end{equation*}
\notag
$$
It is clear that $\alpha(k)$ is a positive constant depending only on $k$. Since $3=2+1=2+R(1)$ and $2\in \mathbb{P}$, we have $r(3) \geqslant 1$. Hence
$$
\begin{equation*}
\#\biggl\{1\leqslant n \leqslant x\colon r(n)\geqslant \frac{1}{\alpha (k)} \frac{x^{1/k}}{\ln x}\biggr\}\geqslant 1 \geqslant \frac{1}{x_{0}(k)} x
\end{equation*}
\notag
$$
for any real number $3 \leqslant x \leqslant x_{0}(k)$. Setting
$$
\begin{equation*}
b_{1}(k) = \min \biggl(c_{1}(k), \frac{1}{\alpha(k)}\biggr),\qquad b_{2}(k)=\min \biggl(c_{2}(k), \frac{1}{x_{0}(k)}\biggr),
\end{equation*}
\notag
$$
we see that $b_{1}(k)$ and $b_{2}(k)$ are positive constants depending only on $k$. Hence
$$
\begin{equation*}
\#\biggl\{1\leqslant n \leqslant x\colon r(n)\geqslant b_{1}(k)\frac{x^{1/k}}{\ln x}\biggr\}\geqslant b_{2}(k) x
\end{equation*}
\notag
$$
for any real number $x\geqslant 3$. It now suffices to denote $b_{1}(k)$ by $c_{1}(k)$ and write $c_{2}(k)$ for $b_{2}(k)$. Corollary 1.2 is proved. Proof of Theorem 1.8. By Hasse’s theorem [8], we have $|\#E(\mathbb{F}_{p})- (p+1)|< 2\sqrt{p}$ for any prime $p> 3$. From (3.18) we also have that $|\#E(\mathbb{F}_{p}) - (p+1)|<2\sqrt{p}$ for $p\in \{2, 3\}$. Hence
$$
\begin{equation*}
|\#E(\mathbb{F}_{p}) - (p+1)|<2\sqrt{p}
\end{equation*}
\notag
$$
for any prime $p$. Thus,
$$
\begin{equation}
(\sqrt{p}-1)^{2}< \#E(\mathbb{F}_{p})< (\sqrt{p}+1)^{2}
\end{equation}
\tag{3.36}
$$
for any prime $p$.
We set $A=\bigl\{ \#E(\mathbb{F}_{p})\colon p \geqslant 2\bigr\}$. We are going to apply Theorem 1.6. Suppose that $p\geqslant 5$. Let $q$ be a prime such that $q> p + 4\sqrt{p}+ 4$. Then $(\sqrt{q}-1)^{2}> (\sqrt{p}+1)^{2}$, and so from (3.36) we have $\#E(\mathbb{F}_{q})> \#E(\mathbb{F}_{p})$. Let $q$ be a prime such that $q< p - 4\sqrt{p}+ 4$. Then $(\sqrt{q}+1)^{2}< (\sqrt{p}-1)^{2}$, and now by (3.36) we have $\#E(\mathbb{F}_{q})< \#E(\mathbb{F}_{p})$. Hence
$$
\begin{equation*}
\begin{aligned} \, \operatorname{ord}_{A}\bigl(\#E(\mathbb{F}_{p})\bigr)&= \#\{q\colon \#E(\mathbb{F}_{q})=\#E(\mathbb{F}_{p})\} \\ &\leqslant \#\{q\colon p - 4\sqrt{p}+ 4 \leqslant q \leqslant p + 4\sqrt{p}+ 4\} \\ &\leqslant \#\{n\in \mathbb{N}\colon p - 4\sqrt{p}+ 4 \leqslant n \leqslant p + 4\sqrt{p}+ 4\} \\ &= [p + 4\sqrt{p}+ 4] - \lceil p - 4\sqrt{p}+ 4\rceil + 1\leqslant 8\sqrt{p}+1 < 9\sqrt{p}. \end{aligned}
\end{equation*}
\notag
$$
Suppose that $p<5$, that is, $p\in \{2,3\}$. From (3.18) we obtain $\#E(\mathbb{F}_{p})\leqslant 7$. Let $q > 14$ be a prime. Then $(\sqrt{q}-1)^{2}>7$, and from (3.36) we obtain $\#E(\mathbb{F}_{q})> \#E(\mathbb{F}_{p})$. Hence
$$
\begin{equation*}
\operatorname{ord}_{A}\bigl(\#E(\mathbb{F}_{p})\bigr)\leqslant \#\{q\colon q\leqslant 14\} = 6 < 6\sqrt{p}.
\end{equation*}
\notag
$$
We obtain
$$
\begin{equation}
\operatorname{ord}_{A}\bigl(\#E(\mathbb{F}_{p})\bigr) \leqslant 9\sqrt{p}
\end{equation}
\tag{3.37}
$$
for any prime $p$. In particular, $\operatorname{ord}_{A} (n) <+\infty$ for any positive integer $n$. We assume that $x\geqslant x_0$, where $x_0$ is a positive absolute constant; the (sufficiently large) constant $x_0$ will be chosen later. We may assume that $x_{0} \geqslant 100$. Hence $x\geqslant 100$. Let $p$ be a prime such that $\#E(\mathbb{F}_{p})\leqslant x$. It follows from (3.36) that $(\sqrt{p}-1)^{2}< x$ or, equivalently, $\sqrt{p}-1< \sqrt{x}$. Hence
$$
\begin{equation}
p< x+2\sqrt{x}+1< 2x.
\end{equation}
\tag{3.38}
$$
We put $n_0 = \#E(\mathbb{F}_2)$. From (3.18) we have $1\leqslant n_0 \leqslant 5< x$. Hence
$$
\begin{equation*}
\rho_{A}(x)=\max_{n\leqslant x}\operatorname{ord}_{A}(n) \geqslant \operatorname{ord}_{A}(n_0) \geqslant 1.
\end{equation*}
\notag
$$
Let $n_1$ be a positive integer such that $n_1 \leqslant x$ and $\rho_{A}(x)= \operatorname{ord}_{A}(n_1)$. Since $\rho_{A}(x) \geqslant 1$, we obtain $\operatorname{ord}_{A}(n_1) \geqslant 1$, and hence, there is a prime $p$ such that $\#E(\mathbb{F}_{p})=n_1$. Since $n_1\leqslant x$, we have $\#E(\mathbb{F}_{p}) \leqslant x$. From (3.38) we obtain $p\leqslant 2x$. Applying (3.37), we have
$$
\begin{equation*}
\rho_{A}(x)= \operatorname{ord}_{A}(n_1)= \operatorname{ord}_{A} \bigl(\#E(\mathbb{F}_{p})\bigr)\leqslant 9\sqrt{p} \leqslant 9\sqrt{2x}< 13 \sqrt{x}.
\end{equation*}
\notag
$$
Thus,
$$
\begin{equation}
1 \leqslant \rho_{A}(x) \leqslant 13\sqrt{x}.
\end{equation}
\tag{3.39}
$$
An application of (3.38) shows that
$$
\begin{equation*}
\begin{aligned} \, N_{A}(x)&=\#\{p\colon \#E(\mathbb{F}_{p})\leqslant x\}\leqslant \#\{p\colon p\leqslant 2x\}= \pi (2x) \\ &\leqslant a\frac{2x}{\ln (2x)}\leqslant 2a \frac{x}{\ln x}= a_{2} \frac{x}{\ln x}, \end{aligned}
\end{equation*}
\notag
$$
where $a_2$ is a positive absolute constant.
Let $t\geqslant 20$ be a real number. It is easy to see that
$$
\begin{equation*}
\frac{t}{2}\leqslant t - 2\sqrt{t}+1.
\end{equation*}
\notag
$$
Hence if $p$ is a prime such that $p\leqslant t/2$, then $p\leqslant t-2\sqrt{t}+1$ or, equivalently, $(\sqrt{p}+1)^{2}\leqslant t$. From (3.36) we have $\#E(\mathbb{F}_{p})\leqslant t$. Therefore,
$$
\begin{equation}
\begin{aligned} \, N_{A}(t)&=\#\{p\colon \#E(\mathbb{F}_{p})\leqslant t\} \notag \\ &\geqslant \#\biggl\{p\colon p \leqslant \frac{t}2\biggr\}= \pi \biggl(\frac{t}2\biggr) \geqslant b \frac{t/2}{\ln (t/2)}\geqslant \frac{b}{2}\, \frac{t}{\ln t}= a_{1} \frac{t}{\ln t}, \end{aligned}
\end{equation}
\tag{3.40}
$$
where $a_1$ is a positive absolute constant. As a result,
$$
\begin{equation}
a_{1} \frac{x}{\ln x} \leqslant N_{A}(x) \leqslant a_{2} \frac{x}{\ln x},
\end{equation}
\tag{3.41}
$$
where $a_1$, $a_2$ are positive absolute constants. Since $x/2 >20$, from (3.40) we have
$$
\begin{equation*}
N_{A}\biggl(\frac{x}2\biggr) \geqslant a_{1} \frac{x/2}{\ln (x/2)}\geqslant \frac{a_1}{2}\, \frac{x}{\ln x}= \frac{a_1}{2a_2}\, a_{2} \frac{x}{\ln x}\geqslant \frac{a_1}{2a_2}\, N_{A}(x)=\gamma_1 N_{A}(x),
\end{equation*}
\notag
$$
where $\gamma_1 = a_{1}/ (2a_{2})$ is a positive absolute constant. This proves (1.4) and (1.5).
We have
$$
\begin{equation*}
10 \leqslant (\ln x)^{1/14} \leqslant (c_{1}\ln x)^{1/13}
\end{equation*}
\notag
$$
if $x_0$ is large enough (here, $c_1$ is a positive absolute constant from (3.19)). Consider the sum
$$
\begin{equation*}
S=\sum_{\substack{q\in \mathbb{P}:\\ \#E(\mathbb{F}_{q})< x}}\, \sum_{\substack{t\in \mathbb{P}:\\ t\leqslant (\ln x)^{1/14}}} \frac{\lambda (q,t) \ln t}{t},
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
\lambda (q, t):= \#\{p\in \mathbb{P}\colon \#E(\mathbb{F}_{q})< \#E(\mathbb{F}_{p})\leqslant x \text{ and }\#E(\mathbb{F}_{p})\equiv \#E(\mathbb{F}_{q})\ (\operatorname{mod} t)\}.
\end{equation*}
\notag
$$
Let $q$ and $t$ be in the range of summation of $S$. From (3.38) and (3.19) we obtain
$$
\begin{equation*}
\begin{aligned} \, \lambda (q, t) &\leqslant \#\{p\leqslant 2x\colon \#E(\mathbb{F}_{p}) \equiv \#E(\mathbb{F}_{q}) \ (\operatorname{mod} t)\} \\ &\leqslant C(E) \biggl(\frac{\pi(2x)} {\varphi (t)}+ 2x\exp(-b t^{-2} \sqrt{\ln (2x)}\,)\biggr). \end{aligned}
\end{equation*}
\notag
$$
Hence
$$
\begin{equation}
\begin{aligned} \, &\sum_{\substack{t\in \mathbb{P}:\\ t\leqslant (\ln x)^{1/14}}} \frac{\lambda (q,t) \ln t}{t} \nonumber \\ &\qquad\leqslant C(E) \Biggl(\pi(2x)\sum_{\substack{t\in \mathbb{P}:\\ t\leqslant (\ln x)^{1/14}}} \frac{\ln t}{t\varphi (t)}+ 2x \sum_{\substack{t\in \mathbb{P}:\\ t\leqslant (\ln x)^{1/14}}} \frac{\ln t}{t\exp(b t^{-2} \sqrt{\ln (2x)}\,)}\Biggr). \end{aligned}
\end{equation}
\tag{3.42}
$$
Since $\varphi (n) \geqslant c n/ \ln\ln(n+2)$ for any positive integer $n$, where $c$ is a positive absolute constant, we obtain
$$
\begin{equation*}
\sum_{\substack{t\in \mathbb{P}:\\ t\leqslant (\ln x)^{1/14}}} \frac{\ln t}{t\varphi (t)} \leqslant \frac{1}{c} \sum_{\substack{t\in \mathbb{P}:\\ t\leqslant (\ln x)^{1/14}}} \frac{\ln t \ln\ln (t+2)}{t^{2}}\leqslant \frac{1}{c} \sum_{n=1}^{\infty}\frac{\ln n \ln\ln (n+2)}{n^{2}}=c_1,
\end{equation*}
\notag
$$
where $c_1$ is a positive absolute constant. We have
$$
\begin{equation}
\pi(2x)\sum_{\substack{t\in \mathbb{P}:\\ t\leqslant (\ln x)^{1/14}}} \frac{\ln t}{t\varphi (t)}\leqslant c_1 \pi(2x)\leqslant c_1 a\frac{2x}{\ln (2x)}\leqslant 2c_1 a\frac{x}{\ln x} = c_2 \frac{x}{\ln x},
\end{equation}
\tag{3.43}
$$
where $c_2$ is a positive absolute constant.
For any prime $t \leqslant (\ln x)^{1/14}$, we have
$$
\begin{equation*}
\frac{b \sqrt{\ln (2x)}}{t^{2}}\geqslant \frac{b \sqrt{\ln (2x)}}{(\ln x)^{1/7}}\geqslant \frac{b (\ln x)^{1/2}}{(\ln x)^{1/7}}= b (\ln x)^{5/14}.
\end{equation*}
\notag
$$
Hence
$$
\begin{equation*}
2x \sum_{\substack{t\in \mathbb{P}:\\ t\leqslant (\ln x)^{1/14}}} \frac{\ln t}{t\exp(b t^{-2} \sqrt{\ln (2x)}\,)} \leqslant 2x\exp\bigl(-b (\ln x)^{5/14}\bigr) \sum_{\substack{t\in \mathbb{P}:\\ t\leqslant (\ln x)^{1/14}}} \frac{\ln t}{t}.
\end{equation*}
\notag
$$
Putting $k= [(\ln x)^{1/14}]$ and applying Lemma 3.5, we have
$$
\begin{equation*}
\sum_{\substack{t\in \mathbb{P}:\\ t\leqslant (\ln x)^{1/14}}} \frac{\ln t}{t}= \sum_{p\leqslant k} \frac{\ln p}{p}\leqslant c \ln k \leqslant c \ln \bigl((\ln x)^{1/14}\bigr)= \frac{c}{14}\ln\ln x=c_3\ln\ln x,
\end{equation*}
\notag
$$
where $c_3 = c/14$ is a positive absolute constant.
We obtain
$$
\begin{equation*}
2x \sum_{\substack{t\in \mathbb{P}:\\ t\leqslant (\ln x)^{1/14}}} \frac{\ln t}{t\exp(b t^{-2} \sqrt{\ln (2x)}\,)}\leqslant 2c_{3}x\,\exp\bigl(-b (\ln x)^{5/14}\bigr)\ln\ln x.
\end{equation*}
\notag
$$
Let us show that
$$
\begin{equation}
2c_{3}x\exp\bigl(-b (\ln x)^{5/14}\bigr)\ln\ln x \leqslant \frac{x}{\ln x}
\end{equation}
\tag{3.44}
$$
or, equivalently,
$$
\begin{equation*}
2c_{3}\ln x \ln\ln x \leqslant \exp\bigl(b (\ln x)^{5/14}\bigr).
\end{equation*}
\notag
$$
Taking logarithms, we obtain
$$
\begin{equation*}
\ln(2c_3)+\ln\ln x + \ln\ln\ln x \leqslant b (\ln x)^{5/14}.
\end{equation*}
\notag
$$
This inequality holds for sufficiently large $x_0$. Inequality (3.44) is proved.
We have
$$
\begin{equation}
2x \sum_{\substack{t\in \mathbb{P}:\\ t\leqslant (\ln x)^{1/14}}} \frac{\ln t}{t\exp(b t^{-2} \sqrt{\ln (2x)}\,)} \leqslant \frac{x}{\ln x}.
\end{equation}
\tag{3.45}
$$
Substituting (3.43) and (3.45) into (3.42), we obtain
$$
\begin{equation*}
\sum_{\substack{t\in \mathbb{P}:\\ t\leqslant (\ln x)^{1/14}}} \frac{\lambda (q,t) \ln t}{t}\leqslant C(E)(c_2 +1)\frac{x}{\ln x} = C_{1}(E) \frac{x}{\ln x},
\end{equation*}
\notag
$$
where $C_{1}(E) >0$ is a constant depending only on $E$.
Applying (3.41), we obtain
$$
\begin{equation*}
\begin{aligned} \, \sum_{\substack{q\in \mathbb{P}:\\ \#E(\mathbb{F}_{q})< x}}\, \sum_{\substack{t\in \mathbb{P}:\\ t\leqslant (\ln x)^{1/14}}} \frac{\lambda (q,t) \ln t}{t} &\leqslant C_{1}(E)\, \frac{x}{\ln x} \, N_{A}(x) \\ &\leqslant\frac{C_{1}(E)}{a_1} (N_{A}(x))^{2}= \gamma_{2}(E) (N_{A}(x))^{2}, \end{aligned}
\end{equation*}
\notag
$$
where $\gamma_{2}(E) >0$ is a constant depending only on $E$. This proves inequality (1.6) with $\alpha=1/14$.
By Theorem 1.6, there are positive constants $c_{1}=c_{1}(\gamma_1)$, $c_{2}=c_{2} (\gamma_{1}, \gamma_{2}(E), \alpha)$ such that
$$
\begin{equation*}
\#\biggl\{1\leqslant n \leqslant x\colon r(n)\geqslant c_{1}\frac{N_{A}(x)}{\ln x}\biggr\} \geqslant c_{2}x\frac{N_{A}(x)}{N_{A}(x)+\rho_{A}(x)\ln x},
\end{equation*}
\notag
$$
where
$$
\begin{equation*}
r(n)=\#\{(p, q)\in \mathbb{P}^{2}\colon p+\#E(\mathbb{F}_q)=n\}.
\end{equation*}
\notag
$$
Since $\alpha = 1/14$, $\gamma_1$ is a positive absolute constant, and $\gamma_2(E)$ is a positive constant depending only on $E$, we see that $c_1$ is a positive absolute constant, and $c_{2}$ is a positive constant depending only on $E$.
By (3.41),
$$
\begin{equation*}
\#\biggl\{1\leqslant n \leqslant x\colon r(n)\geqslant c_{1}\frac{N_{A}(x)}{\ln x}\biggr\} \leqslant \#\biggl\{1\leqslant n \leqslant x\colon r(n)\geqslant c_{1} a_{1} \frac{x}{(\ln x)^{2}}\biggr\}.
\end{equation*}
\notag
$$
An appeal to (3.39) shows that
$$
\begin{equation*}
\rho_{A}(x)\ln x \leqslant 13 \sqrt{x}\ln x\leqslant a_{1}\frac{x}{\ln x}
\end{equation*}
\notag
$$
if $x_0$ is sufficiently large (here, $a_1$ is a positive absolute constant from (3.41)). Hence
$$
\begin{equation*}
1 \leqslant \rho_{A}(x)\ln x \leqslant N_{A}(x),
\end{equation*}
\notag
$$
and, therefore,
$$
\begin{equation*}
\frac{N_{A}(x)}{N_{A}(x)+\rho_{A}(x)\ln x}\geqslant \frac{N_{A}(x)}{N_{A}(x)+ N_{A}(x)}= \frac{1}{2}.
\end{equation*}
\notag
$$
We obtain
$$
\begin{equation*}
\#\biggl\{1\leqslant n \leqslant x\colon r(n)\geqslant c_{1} a_{1} \frac{x}{(\ln x)^{2}}\biggr\}\geqslant \frac{c_{2}(E)}{2}x.
\end{equation*}
\notag
$$
Consequently, $c_{1} a_{1}$ is a positive absolute constant, and $c_{2}(E)/2$ is a positive constant depending only on $E$. It suffices to denote $c_{1} a_{1}$ by $c_1$, and write $c_{2}(E)$ for $c_{2}(E)/2$. Theorem 1.8 is proved. Proof of Theorem 1.9. We put
$$
\begin{equation*}
A=\bigl\{a^{j^{b}}\colon j=0, 1, 2,\dots\bigr\}.
\end{equation*}
\notag
$$
We assume that $x\geqslant x_{0}(a, b)$, where $x_{0}(a, b) >0$ is a constant depending only on $a$ and $b$; the (sufficiently large) constant $x_{0}(a, b)$ will chosen later. We are going to apply Theorem 1.6. It is clear that
$$
\begin{equation*}
\begin{gathered} \, \operatorname{ord}_{A}(n)=\#\bigl\{j\geqslant 0\colon a^{j^{b}}= n\bigr\}\leqslant 1,\qquad n\in\mathbb{N}, \\ N_{A}(x)=\#\bigl\{j\geqslant 0\colon a^{j^{b}}\leqslant x\bigr\} =y+1, \quad \text{where}\quad y:=\biggl[\biggl(\frac{\ln x}{\ln a}\biggr)^{1/b}\biggr]. \end{gathered}
\end{equation*}
\notag
$$
Since $\operatorname{ord}_{A}(1)=1$, we see that
$$
\begin{equation*}
\rho_{A}(x)= \max_{n\leqslant x} \operatorname{ord}_{A}(n) =1.
\end{equation*}
\notag
$$
We have
$$
\begin{equation}
y\geqslant 10,\qquad \biggl(\frac{\ln x}{\ln a}\biggr)^{1/b}\leqslant N_{A}(x)\leqslant 2 \biggl(\frac{\ln x}{\ln a}\biggr)^{1/b},\qquad N_{A}\left(x\over 2\right)\geqslant \frac{1}{\sqrt{8}}\, N_{A}(x)
\end{equation}
\tag{3.46}
$$
if $x_{0}(a, b)$ is sufficiently large. Now (1.4) and (1.5) follow from (3.46).
Let us show that
$$
\begin{equation}
\sum_{0\leqslant k\leqslant y}\, \sum_{p\leqslant (\ln x)^{1/(2b)}} \frac{\lambda(k,p) \ln p}{p}\leqslant \gamma_{2}(a, b) y^{2},
\end{equation}
\tag{3.47}
$$
where
$$
\begin{equation*}
\lambda(k,p) = \#\Lambda (k, p),\qquad \Lambda(k,p):=\bigl\{k<j\leqslant y\colon a^{j^{b}}\equiv a^{k^{b}}\, (\operatorname{mod} p)\bigr\},
\end{equation*}
\notag
$$
and $\gamma_{2}(a, b)$ is a positive constant depending only on $a$ and $b$.
We fix an integer $k$ with $0\leqslant k \leqslant y$. We have
$$
\begin{equation*}
\sum_{p\leqslant (\ln x)^{1/(2b)}} \frac{\lambda(k,p)\ln p}{p}= \sum_{\substack{p\leqslant (\ln x)^{1/(2b)}:\\ p\mid a\text{ or }p\mid (a-1)}} + \sum_{\substack{p\leqslant (\ln x)^{1/(2b)}:\\ (p,a)=1\text{ and }(p,a-1)=1}} =S_1+ S_2.
\end{equation*}
\notag
$$
Since $\lambda (k, p)\leqslant y$, we obtain
$$
\begin{equation*}
S_1\leqslant y \sum_{\substack{p\leqslant (\ln x)^{1/(2b)}:\\ p\mid a\text{ or }p\mid (a-1)}}\frac{\ln p}{p}\leqslant y \sum_{\substack{p:\\ p\mid a\text{ or }p\mid (a-1)}}\frac{\ln p}{p}= c_{1}(a)y,
\end{equation*}
\notag
$$
where $c_{1}(a)>0$ is a constant depending only on $a$.
Let $p$ be in the range of summation of $S_2$. Since $(a,p)= 1$, we have $a^{p-1}\equiv 1$ $ (\operatorname{mod} p)$ (Fermat’s theorem). Let $h_{a}(p)$ be the order of $a$ modulo $p$, that is, $h_{a}(p)$ is the least positive integer $h$ such that $a^{h}\equiv 1\ (\operatorname{mod} p)$. Since $(p,a-1)=1$, we have $1<h_{a}(p)\leqslant p-1$. Let $j\in \Lambda (k, p)$. Hence
$$
\begin{equation*}
a^{j^{b}}\equiv a^{k^{b}}\quad (\operatorname{mod} p).
\end{equation*}
\notag
$$
Since
$$
\begin{equation*}
(a^{k^{b}}, p)=1,
\end{equation*}
\notag
$$
we obtain
$$
\begin{equation*}
a^{j^{b}-k^{b}}\equiv 1\quad (\operatorname{mod} p).
\end{equation*}
\notag
$$
Hence (see, for example, Ch. VI in [ 2]), $j^{b}-k^{b}\equiv 0\ (\operatorname{mod} h_{a}(p))$.
We now need the following result of Konyagin (see Theorem 2 in [9]). Let $m, n\in \mathbb{N}$ and let
$$
\begin{equation*}
f(x)= \sum_{i=0}^{n} a_{i} x^{i},
\end{equation*}
\notag
$$
where $a_{0}, \dots, a_{n}$ are integers satisfying $(a_{0},\dots, a_{n}, m)=1$. Next, let $\rho (f, m)$ be the number of solutions of the congruence $f(x)\equiv 0\ (\operatorname{mod} m)$. Then
$$
\begin{equation}
\rho (f, m) \leqslant c n m^{1-1/n},
\end{equation}
\tag{3.48}
$$
where $c$ is a positive absolute constant.
We define
$$
\begin{equation*}
U=\bigl\{j\in \{0,\dots, h_{a}(p)-1\}\colon j^{b}-k^{b}\equiv 0 \ (\operatorname{mod} h_{a}(p))\bigr\}.
\end{equation*}
\notag
$$
From (3.48) we obtain
$$
\begin{equation*}
\#U\leqslant cb (h_{a}(p))^{1-1/b}.
\end{equation*}
\notag
$$
It is easy to see that
$$
\begin{equation*}
\lambda (k, p) \leqslant \sum_{j_{0}\in U} \#\{t\in \mathbb{Z}\colon 1\leqslant j_{0}+h_{a}(p)t\leqslant y\}.
\end{equation*}
\notag
$$
We have
$$
\begin{equation*}
(\ln x)^{1/ (2b)} \leqslant \biggl(\frac{\ln x}{\ln a}\biggr)^{1/b}-1
\end{equation*}
\notag
$$
if $x_{0}(a,b)$ is sufficiently large. Hence
$$
\begin{equation*}
h_{a}(p) \leqslant p-1 < p\leqslant (\ln x)^{1/ (2b)} \leqslant \biggl(\frac{\ln x}{\ln a}\biggr)^{1/b}-1\leqslant y.
\end{equation*}
\notag
$$
Given $j_{0}\in U$, we have
$$
\begin{equation*}
\#\{t\in \mathbb{Z}\colon 1\leqslant j_{0}+h_{a}(p)t\leqslant y\}\leqslant \frac{y}{h_{a}(p)}+1\leqslant \frac{2y}{h_{a}(p)}.
\end{equation*}
\notag
$$
Hence
$$
\begin{equation*}
\lambda (k, p)\leqslant \frac{2y}{h_{a}(p)} \#U \leqslant \frac{2y}{h_{a}(p)} cb \bigl(h_{a}(p)\bigr)^{1-1/b}= c_{2}(b) \frac{y}{\bigl(h_{a}(p)\bigr)^{1/b}},
\end{equation*}
\notag
$$
where $c_{2}(b)=2cb$ is a positive constant depending only on $b$.
As a result,
$$
\begin{equation}
\begin{aligned} \, S_2 &= \sum_{\substack{p\leqslant (\ln x)^{1/(2b)}:\\ (p,a)=1\text{ and }(p,a-1)=1}}\frac{\lambda(k,p)\ln p}{p}\leqslant c_{2}(b) y \sum_{\substack{p\leqslant (\ln x)^{1/(2b)}:\\ (p,a)=1\text{ and }(p,a-1)=1}} \frac{\ln p}{p(h_{a}(p))^{1/b}} \notag \\ &\leqslant c_{2}(b) y\sum_{\substack{p:\\ (p,a)=1}}\frac{\ln p}{p(h_{a}(p))^{1/b}}. \end{aligned}
\end{equation}
\tag{3.49}
$$
We put
$$
\begin{equation*}
D(z)=\sum_{n\leqslant z} d_n,\qquad \text{where}\quad d_n= \sum_{\substack{p:\\ (p,a)=1\\ h_{a}(p)=n}}\frac{\ln p}{p},\quad n=1, 2, \dots\,.
\end{equation*}
\notag
$$
Let $z\geqslant 100$. Then
$$
\begin{equation*}
D(z)=\sum_{n\leqslant z} d_n= \sum_{n\leqslant z} \sum_{\substack{p:\\ (p,a)=1\\ h_{a}(p)=n}}\frac{\ln p}{p}.
\end{equation*}
\notag
$$
Let $n$ and $p$ be in the range of summation. Then $h_{a}(p)=n$, and, hence, $a^{n}\equiv 1\ (\operatorname{mod} p)$, that is, $p\mid (a^{n}-1)$. Setting $P(z)=\prod_{n\leqslant z}(a^{n}-1)$, we obtain
$$
\begin{equation*}
D(z)\leqslant \sum_{p \,|\, P(z)}\frac{\ln p}{p} \leqslant c_{0}\ln\ln P(z),
\end{equation*}
\notag
$$
where $c_{0}>0$ is an absolute constant. Since
$$
\begin{equation*}
P(z)\leqslant \prod_{n\leqslant z} a^{n}= a^{1+2+\dots+[z]}\leqslant a^{z^{2}},
\end{equation*}
\notag
$$
we obtain $D(z)\leqslant c_1(a)\ln z$, where $c_1(a)>0$ is constant depending only on $a$. Hence $D(z)\leqslant c(a)\ln (z+1)$ for any real number $z\geqslant 1$, where $c(a)>0$ is a constant depending only on $a$. Hence $D(z)z^{-1/b}\to 0$ as $z\to +\infty$. By partial summation, we have
$$
\begin{equation*}
\sum_{n\leqslant z}\frac{d_n}{n^{1/b}}=\frac{D(z)}{z^{1/b}}+ \frac{1}{b}\int_{1}^{z}\frac{D(t)}{t^{1+1/b}}\,dt
\end{equation*}
\notag
$$
for any real $z\geqslant 1$. Hence
$$
\begin{equation*}
\sum_{n\geqslant 1}\frac{d_n}{n^{1/b}}= \frac{1}{b}\int_{1}^{+\infty}\frac{D(t)}{t^{1+1/b}}\,dt\leqslant \frac{c(a)}{b}\int_{1}^{+\infty}\frac{\ln (t+1)}{t^{1+1/b}}\,dt = c_{3}(a,b),
\end{equation*}
\notag
$$
where $c_3(a, b)>0$ is a constant depending only on $a$ and $b$.
We have
$$
\begin{equation*}
\begin{aligned} \, \sum_{n\geqslant 1}\frac{d_{n}}{n^{1/b}}&= \sum_{n\geqslant 1} \sum_{\substack{p:\\ (p,a)=1\\ h_{a}(p)=n}} \frac{\ln p}{p (h_{a}(p))^{1/b}}=\sum_{\substack{p:\\ (p,a)=1}} \frac{\ln p}{p (h_{a}(p))^{1/b}}\sum_{\substack{n\geqslant 1:\\ h_{a}(p)=n}}1 \\ &=\sum_{\substack{p:\\ (p,a)=1}} \frac{\ln p}{p (h_{a}(p))^{1/b}}. \end{aligned}
\end{equation*}
\notag
$$
Hence (see (3.49)), $S_{2}\leqslant c_4(a,b)y$, where $c_4(a,b)>0$ is a constant depending only on $a$ and $b$, and
$$
\begin{equation*}
\sum_{p\leqslant (\ln x)^{1/(2b)}} \frac{\lambda(k,p)\ln p}{p}= S_1+S_2 \leqslant \bigl(c_1(a)+ c_4 (a, b)\bigr)y= c_{5}(a, b)y.
\end{equation*}
\notag
$$
As a result,
$$
\begin{equation*}
\begin{aligned} \, \sum_{0\leqslant k\leqslant y}\sum_{p\leqslant (\ln x)^{1/(2b)}}\frac{\lambda(k,p)\ln p}{p} &\leqslant \sum_{0\leqslant k\leqslant y} c_{5}(a,b)y= c_{5}(a,b)y(y+1) \\ &\leqslant 2c_{5}(a, b)y^{2} = \gamma_{2}(a,b) y^{2}, \end{aligned}
\end{equation*}
\notag
$$
where $\gamma_{2}(a,b)>0$ is a constant depending only on $a$ and $b$. This proves inequality (3.47), and, therefore, (1.6) with $\alpha=1/(2b)$.
An application of Theorem 1.6 shows that
$$
\begin{equation*}
\begin{aligned} \, &\#\bigl\{1\leqslant n \leqslant x\colon \text{there are }p\in \mathbb{P} \text{ and }j\in \mathbb{Z}_{\geqslant 0} \text{ such that }p+ a^{j^{b}}=n\bigr\} \\ &\quad\geqslant c_{2}(a,b)x\,\frac{N_{A}(x)}{N_{A}(x)+\rho_{A}(x)\ln x}, \end{aligned}
\end{equation*}
\notag
$$
where $c_{2}(a,b)>0$ is a constant depending only on $a$ and $b$.
We have
$$
\begin{equation*}
\biggl(\frac{\ln x}{\ln a}\biggr)^{1/b}\leqslant \ln x
\end{equation*}
\notag
$$
if $x_{0}(a,b)$ is sufficiently large. Using (3.46) and taking into account that $\rho_{A}(x)=1$, we obtain
$$
\begin{equation*}
\begin{aligned} \, \frac{N_{A}(x)}{N_{A}(x)+\rho_{A}(x)\ln x}&\geqslant \frac{(\ln x/\ln a)^{1/b}}{2(\ln x/\ln a)^{1/b}+\ln x} \\ &\geqslant \frac{(\ln x/\ln a)^{1/b}}{2\ln x+\ln x}= \frac{1}{3 (\ln a)^{1/b}}\frac{1}{(\ln x)^{1-1/b}}. \end{aligned}
\end{equation*}
\notag
$$
Next,
$$
\begin{equation*}
\begin{aligned} \, &\#\bigl\{1\leqslant n \leqslant x\colon \text{there are }p\in \mathbb{P} \text{ and }j\in \mathbb{Z}_{\geqslant 0}\text{ such that }p+ a^{j^{b}}=n\bigr\} \\ &\qquad\geqslant \frac{c_{2}(a,b)}{3 (\ln a)^{1/b}} \frac{x}{(\ln x)^{1-1/b}} = c_{1}(a, b)\frac{x}{(\ln x)^{1-1/b}}, \end{aligned}
\end{equation*}
\notag
$$
where $c_{1}(a,b)>0$ is a constant depending only on $a$ and $b$.
We have
$$
\begin{equation*}
\begin{aligned} \, &\#\bigl\{1\leqslant n \leqslant x\colon \text{there are }p\in \mathbb{P}\text{ and } j\in \mathbb{Z}_{\geqslant 0}\text{ such that }p+ a^{j^{b}}=n\bigr\} \\ &\quad\leqslant \#\bigl\{(p,j)\in \mathbb{P}\times \mathbb{Z}_{\geqslant 0}\colon p\leqslant x\text{ and }a^{j^{b}}\leqslant x\bigr\} = \#\{p\colon p\leqslant x\}\, \#\bigl\{j\geqslant 0\colon a^{j^{b}}\leqslant x\bigr\} \\ &\quad=\pi(x) N_{A}(x) \leqslant c\,\frac{x}{\ln x}\,2 \biggl(\frac{\ln x}{\ln a}\biggr)^{1/b}= c_{2}(a, b)\, \frac{x}{(\ln x)^{1-1/b}}, \end{aligned}
\end{equation*}
\notag
$$
where $c_{2}(a, b)>0$ is a constant depending only on $a$ and $b$.
Since
$$
\begin{equation*}
3=p+a^{j^{b}}
\end{equation*}
\notag
$$
for $p=2$ and $j=0$, the claim in the case $3 \leqslant x < x_{0}(a,b)$ is trivial. Theorem 1.9 is proved. I would like to thank Sergei Konyagin for many useful conversations and suggestions. Also I would like to thank the anonymous referee for many useful comments.
|
|
|
|
Bibliography
|
|
| |
| 1. |
J. Maynard, “Dense clusters of primes in subsets”, Compos. Math., 152:7 (2016), 1517–1554 |
| 2. |
G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 6th ed., Oxford Univ. Press, Oxford, 2008 |
| 3. |
N. P. Romanoff, “Über einige Sätze der additiven Zahlentheorie”, Math. Ann., 109:1 (1934), 668–678 ; Russian transl. N. P. Romanov, “On some theorems of additive number theory”, Uspekhi Mat. Nauk, 1940, no. 7, 47–56 |
| 4. |
K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957 ; Russian transl. Distribution of prime numbers, Mir, Moscow, 1967 |
| 5. |
M. Ram Murty, Problems in analytic number theory, Grad. Texts in Math., 206, Readings in Math., 2nd ed., Springer, New York, 2008 |
| 6. |
C. David and J. Wu, “Pseudoprime reductions of elliptic curves”, Canad. J. Math., 64:1 (2012), 81–101 |
| 7. |
L. Schnirelmann, “Über additive Eigenschaften von Zahlen”, Math. Ann., 107 (1933), 649–690 ; Russian transl. “On the additive properties of numbers”, Uspekhi Mat. Nauk, 1940, no. 7, 7–46 |
| 8. |
H. Hasse, “Abstrakte Begründung der komplexen Multiplikation und Riemannsche Vermutung in Funktionenkörpern”, Abh. Math. Sem. Hamburg, 10:1 (1934), 325–348 |
| 9. |
S. V. Konyagin, “On the number of solutions of an $n$th degree congruence with one unknown”, Mat. Sb., 109(151):2(6) (1979), 171–187 ; English transl. Sb. Math., 37:2 (1980), 151–166 |
Citation:
A. O. Radomskii, “On Romanoff's theorem”, Izv. Math., 87:1 (2023), 113–153
Linking options:
https://www.mathnet.ru/eng/im9306https://doi.org/10.4213/im9306e https://www.mathnet.ru/eng/im/v87/i1/p119
|
|