Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2025, Volume 89, Issue 3, Pages 609–627
DOI: https://doi.org/10.4213/im9652e
(Mi im9652)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the decision problem for quantified probability logics

S. O. Speranski

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: Let $\mathsf{QPL}^{\mathrm{e}}$ expand the quantifier-free “polynomial” probability logic of [4] (R. Fagin et al., 1990) by adding quantifiers over arbitrary events; it can be viewed as a one-sorted elementary language for reasoning about probability spaces. We prove that the $\Sigma_2$-fragment of the $\mathsf{QPL}^{\mathrm{e}}$-theory of finite spaces is hereditarily undecidable. By earlier observations, this implies that $\Pi_2$ is the maximal decidable prefix fragment of $\mathsf{QPL}^{\mathrm{e}}$. Moreover, we obtain similar results for two natural one-sorted logics of probability that emerge from [1] (M. Abadi and J. Y. Halpern, 1994).
Keywords: probability logic, decidability, prefix fragments, elementary theories.
Received: 23.09.2024
Revised: 03.12.2024
Published: 19.06.2025
Bibliographic databases:
Document Type: Article
UDC: 510.647+510.53
MSC: 03B25, 03B48, 03B70
Language: English
Original paper language: English

§ 1. Introduction

The decision problem for (classical) first-order logic can be stated as: given a signature $\sigma$, let $\mathrm{Val}_{\sigma}$ be the set of all valid first-order $\sigma$-sentences; we want to know which prefix fragments of $\mathrm{Val}_{\sigma}$ are decidable. Here, each prefix fragment is denoted by a suitable element of

$$ \begin{equation*} \{ \Sigma_n, \Pi_n \mid n \in \mathbb{N}\}. \end{equation*} \notag $$
Recall that a first-order $\sigma$-formula is $\Sigma_n$ if and only if it has the form
$$ \begin{equation*} \underbrace{{\exists\, \vec{x}_1}\ \forall\, \vec{x}_2\ \dots\ \vec{x}_n}_{n-1\ \text{alternations}}\ \Psi, \end{equation*} \notag $$
where $\vec{x}_1$, …, $\vec{x}_n$ are tuples of variables and $\Psi$ contains no quantifiers; the definition of $\Pi_n$ results by interchanging1 $\exists$ and $\forall$. By using dummy quantifiers, we may order the prefix fragments in the natural way:
Thus the above problem can be restated as: given a signature $\sigma$, find the minimal undecidable (or alternatively, maximal decidable) prefix fragments of $\mathrm{Val}_{\sigma}$. Considerable effort has been devoted to this problem, leading to a complete solution; see [2] for more information.

Of course, similar problems arise for other quantified logics. Roughly, if $\mathscr{L}$ is a language with one sort of variables and two standard quantifiers, that is, $\forall$ and $\exists$, then the decision problem for $\mathscr{L}$ is stated in a way similar to that for first-order language.2 In this article, we shall be concerned with the decision problem for quantified probability logics.

In particular, we shall consider a one-sorted elementary language for reasoning about probability spaces, denoted by $\mathsf{QPL}^{\mathrm{e}}$, which can be viewed as obtained from the well-known “polynomial” language from § 5 in [4] by adding quantifiers over arbitrary events. As was proved in [13] (cf. [11]), the validity problem for $\Pi_2$-$\mathsf{QPL}^{\mathrm{e}}$-sentences is decidable, but that for $\Pi_3$-$\mathsf{QPL}^{\mathrm{e}}$-sentences is not. We are going to improve this result by replacing $\Pi_3$ by $\Sigma_2$, which yields the desired solution of the decision problem for $\mathsf{QPL}^{\mathrm{e}}$.

Furthermore, using the technique developed for $\mathsf{QPL}^{\mathrm{e}}$, we shall solve the decision problems for two other languages, denoted by $\mathscr{L}_1$ and $\mathscr{L}_2$, which are natural one-sorted fragments of the “first-order” languages studied in [1]. Both of these include quantifiers over elements of a given domain; however, $\mathscr{L}_1$ uses probability distributions on the domain, while $\mathscr{L}_2$ utilizes external distributions on an additional set of possible worlds, each of which can be identified with a first-order structure. It should also be remarked that unlike $\mathsf{QPL}^{\mathrm{e}}$, these depend on the choice of a signature3 $\varsigma$. Briefly, we aim to show that, for each $i \in \{ 1, 2 \}$ and any sufficiently rich $\varsigma$, the minimal undecidable prefix fragment of $\mathscr{L}_i(\varsigma)$ is $\Sigma_2$; so, the maximal decidable one is $\Pi_2$. Here, “sufficiently rich” agrees with the richness conditions of the complexity results in [1].

In effect, we shall prove more than what is mentioned above. For instance, the $\Sigma_2$-fragment of the $\mathsf{QPL}^{\mathrm{e}}$-theory of finite probability spaces turns out to be hereditarily undecidable; similarly for $\mathscr{L}_1$ and $\mathscr{L}_2$. Also $\mathscr{L}_1$ and $\mathscr{L}_2$ have the finite model property for $\Pi_2$-sentences.

§ 2. Quantifying over events

By a probability space, or simply a space, we mean a pair $\langle \mathscr{A}, \mathsf{P} \rangle$ where:

Elements of $\mathscr{A}$ are called events, which are measurable with respect to $\mathsf{P}$. Note, in passing, that the countable additivity of $\mathsf{P}$ implies $\mathsf{P}(\bot)=0$, where $\bot$ is the least element of $\mathscr{A}$. We shall write $\mathcal{K}_{\mathrm{all}}$ for the class of all spaces.

The formal language $\mathsf{QPL}^{\mathsf{e}}$ includes:

The Boolean terms are build up from $\bot$, $\top$ and the Boolean variables by use of $\wedge$, $\vee$ and $\neg$ :

Naturally, they represent Boolean combinations of events. By a $\mu$-term we mean an expression of the form $\mu(\phi)$, where $\phi$ is a Boolean term. Intuitively, $\mu(\phi)$ is the probability of $\phi$.

We shall use $\wedge$, $\vee$ and $\neg$ to denote the Boolean operations as well as the ordinary logical connectives. Since their Boolean versions will not occur outside the scope of $\mu$, the interpretations of $\wedge$, $\vee$ and $\neg$ will always be clear from the context. By a basic $\mathsf{QPL}^{\mathsf{e}}$-formula we mean an expression of the form

$$ \begin{equation*} f(\mu(\phi_1), \dots, \mu(\phi_m))\leqslant g(\mu(\phi_{m+1}), \dots, \mu(\phi_{m+n})), \end{equation*} \notag $$
where $f$ and $g$ are polynomials with integer coefficients, and $\phi_1,\dots,\phi_{m+n}$ are Boolean terms. The $\mathsf{QPL}^{\mathsf{e}}$-formulas are built up from the basic $\mathsf{QPL}^{\mathsf{e}}$-formulas in the obvious way, as in classical first-order logic. We treat $t_1 = t_2$ as an abbreviation for $t_1 \leqslant t_2 \wedge t_2 \leqslant t_1$ and also adopt other standard abbreviations. Traditionally, a $\mathsf{QPL}^{\mathrm{e}}$-sentence is a $\mathsf{QPL}^{\mathrm{e}}$-formula with no free variable occurrences. Denote by $\mathrm{Sent}^{\mathrm{e}}$ the collection of all $\mathsf{QPL}^{\mathrm{e}}$-sentences.

The satisfiability relation $\Vdash$ for $\mathsf{QPL}^{\mathsf{e}}$ can be defined in the customary way, treating the logical connective symbols and quantifiers classically. For example, consider

$$ \begin{equation*} \Theta(X) := \mu(X) \ne 0 \wedge \forall\, Y\, (\mu(X \wedge Y) \ne 0 \to \mu (X\wedge \neg Y) = 0). \end{equation*} \notag $$
Let $\mathscr{P} = \langle \mathscr{A}, \mathsf{P} \rangle$ be a probability space. Then, for every $A \in \mathscr{A}$, $\mathscr{P} \Vdash \Theta(A)$ if and only if $A$ is an atom of $\mathscr{A}$ modulo events of measure zero.

Remark 2.1. The quantifier-free fragment of $\mathsf{QPL}^{\mathrm{e}}$ is essentially the “polynomial” logic studied in § 5 of [4], provided that we treat variables as constant symbols.

Next, a $\mathsf{QPL}^{\mathsf{e}}$-formula $\Phi(X_1,\dots, X_n)$ is called valid if $\mathscr{P} \Vdash \Phi(A_1,\dots,A_n)$ for every space $\mathscr{P}$ and all $A_1,\dots,A_n$ in $\mathscr{A}$. Using Tarski’s algorithm from [16], it is rather easy to obtain the following result.

Proposition 2.2 (see [4]). The validity problem for quantifier-free $\mathsf{QPL}^{\mathsf{e}}$-formulas is decidable.5

Denote by $\mathrm{Val}^{\mathrm{e}}$ the collection of all valid $\mathsf{QPL}^{\mathsf{e}}$-sentences. Given a class $\mathcal{K}$ of spaces, define the $\mathsf{QPL}^{\mathrm{e}}$-theory of $\mathcal{K}$ to be

$$ \begin{equation*} \mathrm{Th}(\mathcal{K}) := \{\Phi \in \mathrm{Sent}^{\mathrm{e}} \mid \mathscr{P} \Vdash \Phi\ \text{for every}\ \mathscr{P} \in \mathcal{K}\}. \end{equation*} \notag $$
Thus $\mathrm{Val}^{\mathrm{e}}$ coincides with $\mathrm{Th}(\mathcal{K}_{\mathrm{all}})$. In this paper, however, we shall deal mainly with finite probability spaces. For each $n \in \mathbb{N}$, let
$$ \begin{equation*} \mathcal{K}_n := \text{the class of all spaces with at most}\ n\ \text{events}. \end{equation*} \notag $$
We write $\mathcal{K}_{\mathrm{fin}}$ for the union of $\{\mathcal{K}_n \mid n \in \mathbb{N}\}$, that is, the class of all finite spaces. The following result is obtained by an argument similar to that for Proposition 2.2.

Proposition 2.3 (see [13]). $\mathrm{Th}(\mathcal{K}_n)$ is decidable, uniformly in $n$.

Finally, the notions of $\Sigma_n$- and $\Pi_n$-formula in $\mathsf{QPL}^{\mathrm{e}}$ are analogous to those in first-order logic, as described in the introduction. Sometimes we say that $\Phi$ is existential instead of “$\Phi$ is $\Sigma_1$.” Given $\Gamma \subseteq \mathrm{Sent}^{\mathrm{e}}$, take

$$ \begin{equation*} \Sigma_n \text{-} \Gamma := \{\Phi \in \Gamma \mid \Phi\ \text{is}\ \Sigma_n\}. \end{equation*} \notag $$
Similarly for $\Pi_n \text{-} \Gamma$. Observe that the validity problem for $\Sigma_n$-$\mathsf{QPL}^{\mathrm{e}}$-formulas (which may contain free variables) is equivalent to that for $\Pi_{n+1}$-$\mathsf{QPL}^{\mathrm{e}}$-sentences, and thus corresponds to $\Pi_{n+1} \text{-} \mathrm{Val}^{\mathrm{e}}$. So, Proposition 2.2 establishes the decidability of $\Pi_1 \text{-} \mathrm{Val}^{\mathrm{e}}$. This can be improved.

Theorem 2.4 (see [13]). $\Pi_2 \text{-} \mathrm{Th}(\mathcal{K}_{\mathrm{fin}})$ is decidable. Moreover,

$$ \begin{equation*} \Pi_2 \textit{-} \mathrm{Th}(\mathcal{K}_{\mathrm{fin}}) =\Pi_2 \textit{-} \mathrm{Th}(\mathcal{K}_{\mathrm{all}}). \end{equation*} \notag $$

On the other hand, as was also shown in [13], $\Pi_3 \text{-} \mathrm{Val}^{\mathrm{e}}$ is undecidable. But what about $\Sigma_2$? We are going to prove that $\Sigma_2 \text{-} \mathrm{Val}^{\mathrm{e}}$ and $\mathrm{Sent}^{\mathrm{e}} \setminus \Sigma_2 \text{-} \mathrm{Th}(\mathcal{K}_{\mathrm{fin}})$ are computably inseparable. This implies, in particular, the undecidability of $\Sigma_2 \text{-} \mathrm{Val}^{\mathrm{e}}$.

Remark 2.5. Our work may be compared to the study of prefix fragments of elementary theories in [7]; cf. also [10].

See [14] and [15] for more results about $\mathsf{QPL}^{\mathrm{e}}$.

§ 3. Probabilities on the domain

We are about to describe a natural one-sorted fragment $\mathscr{L}_1$ of Halpern’s “first-order” logic of probability of type $1$. In brief, $\mathscr{L}_1$ is obtained from the language of § 2 in [1] by:

(i) excluding quantifiers over reals, but keeping those over elements of the domain, which are more significant;

(ii) requiring that $\mu$ can only be applied to quantifier-free first-order formulas.

In particular, (ii) implies that no nested occurrences of $\mu$ are allowed. Notice that the lower bound arguments provided in [1] agree with (ii).

Consider a (first-order) signature $\varsigma$. For technical reasons, we shall restrict ourselves to signatures containing no function symbols; cf. the richness conditions in [1]. By an $\mathscr{L}_1 (\varsigma)$-structure we mean a triple $\langle D, \pi, \mathsf{p} \rangle$ where:

Note, in passing, that given $\mathsf{p}$ as above and a non-zero $k \in \mathbb{N}$, we can define a discrete distribution $\mathsf{p}^k$ on $D^k$ by

$$ \begin{equation*} \mathsf{p}^k(d_1, \dots, d_k) := \mathsf{p}(d_1) \cdot \ldots \cdot \mathsf{p}(d_k), \end{equation*} \notag $$
which, of course, generates the measure $\mathsf{P}^k$ on the powerset of $D^k$. Evidently, if $A \subseteq D^k$, and $A'$ is obtained from $A$ by permuting some of the coordinates, then $\mathsf{P}^k(A')$ coincides with $\mathsf{P}^k(A)$.

Remark 3.1. We assume that if the equality symbol belongs to $\varsigma$, then it has arity $2$ and is always interpreted as the equality relation on the corresponding domain.

Let $\mathrm{var}$ be a countable set of individual variables; denote by $\mathrm{Form}^{\circ}_{\varsigma}$ the set of all quantifier-free first-order $\varsigma$-formulas. Then the $\mathscr{L}_1 (\varsigma)$-formulas are built up exactly as in $\mathsf{QPL}^{\mathrm{e}}$, except that:

Next, consider an $\mathscr{L}_1 (\varsigma)$-structure $\mathcal{M} = \langle D, \pi, \mathsf{p} \rangle$. Hence the variables are intended to range over elements of $D$. Given a function $\zeta$ from $\mathrm{var}$ to $D$, we interpret each $\mu_{(x_1, \dots, x_k)}(\phi)$ as

$$ \begin{equation*} \mathsf{P}^k \bigl( \bigl\{(d_1, \dots, d_k) \in D^k \bigm| \phi \text{ is true in } \pi \text{ under } \zeta^{\vec{x}}_{\vec{d}}\bigr\} \bigr), \end{equation*} \notag $$
where $\zeta^{\vec{x}}_{\vec{d}}$ is the function from $\mathrm{var}$ to $D$ such that
$$ \begin{equation*} \zeta^{\vec{x}}_{\vec{d}}(u) = \begin{cases} {d_i} &\text{if }u = x_i \text{ with } i \in\{ 1, \dots, k\}, \\ \zeta(u) &\text{otherwise}. \end{cases} \end{equation*} \notag $$
Now the satisfiability relation for $\mathscr{L}_1 (\varsigma)$ can be defined in the natural way, like that for $\mathsf{QPL}^{\mathrm{e}}$. We shall ambiguously denote it by $\Vdash$, since this should cause no confusion.

We can proceed as in $\mathsf{QPL}$. The corresponding notations are given in Table 1, where $n \in \mathbb{N}$ and $\mathscr{K} \subseteq \mathscr{K}^1_{\mathrm{all}} (\varsigma)$. As one would expect, we have the following result.

Table 1

NotationMeaning
$\mathscr{K}^1_{\mathrm{all}} (\varsigma)$the class of all $\mathscr{L}_1 (\varsigma)$-structures
$\mathscr{K}^1_n (\varsigma)$the class of all $\mathscr{L}_1 (\varsigma)$-structures with at most $n$ elements
$\mathscr{K}^1_{\mathrm{fin}} (\varsigma)$the class of all finite $\mathscr{L}_1 (\varsigma)$-structures
$\mathrm{Sent}^1_{\varsigma}$the collection of all $\mathscr{L}_1 (\varsigma)$-sentences
$\mathrm{Val}^1_{\varsigma}$the collection of all valid $\mathscr{L}_1 (\varsigma)$-sentences
$\mathrm{Th}(\mathscr{K})$the $\mathscr{L}_1 (\varsigma)$-theory of $\mathscr{K}$

Proposition 3.2 (see [1]). $\mathrm{Th}(\mathscr{K}^1_n (\varsigma))$ is decidable, uniformly in $n$.

We are going to prove that, for every sufficiently rich $\varsigma$, the sets

$$ \begin{equation*} \Sigma_2 \text{-} \mathrm{Val}^1_{\varsigma} \quad \text{and} \quad \mathrm{Sent}^1_{\varsigma} \setminus \Sigma_2 \text{-} \mathrm{Th} \bigl( \mathscr{K}^1_{\mathrm{fin}} (\varsigma) \bigr) \end{equation*} \notag $$
are computably inseparable; this implies, among other things, the undecidability of $\Sigma_2 \text{-} \mathrm{Val}^1_{\varsigma}$. We shall also obtain the analogue of Theorem 2.4 for $\mathscr{L}_1$.

§ 4. Probabilities on possible worlds

We now turn to a natural one-sorted fragment $\mathscr{L}_2$ of Halpern’s “first-order” logic of probability of type $2$. It is obtained from the language of § 3 in [1] in a way similar to that of $\mathscr{L}_1$.

Consider a signature $\varsigma$. By an $\mathscr{L}_2 (\varsigma)$-structure we mean a quadruple $\langle D, \Omega, \pi, \mathsf{p} \rangle$, where:

In this context, elements of $\Omega$ are called possible worlds.

The $\mathscr{L}_2 (\varsigma)$-formulas are built up exactly as in $\mathscr{L}_1 (\varsigma)$, except that the subscripts $\vec{x}$ are dropped: we use $\mu$ instead of $\mu_{\vec{x}}$ throughout. Next, consider an $\mathscr{L}_2 (\varsigma)$-structure $\mathcal{M} = \langle D, \Omega, \pi, \mathsf{p} \rangle$. Given a function $\zeta$ from $\mathrm{var}$ to $D$, we interpret each $\mu(\phi)$ as

$$ \begin{equation*} \mathsf{P}(\{ \omega \in \Omega \mid \phi \text{ is true in } \pi(\omega) \text{ under } \zeta\}), \end{equation*} \notag $$
where $\mathsf{P}$ is the probability measure (on the powerset of $\Omega$) generated by $\mathsf{p}$. Then the satisfiability relation for $\mathscr{L}_2 (\varsigma)$ can be defined in the obvious way. We shall denote it by $\Vdash$ as well.

Remark 4.1. Z. Ognjanović and his colleagues have developed suitable infinitary calculi for some languages similar to $\mathscr{L}_2$; see [9] for details.

The notation for $\mathscr{L}_2$ is perfectly similar to that for $\mathscr{L}_1$, but with $1$ replaced by $2$, and one additional modification: we write $\mathscr{K}^2_n (\varsigma)$ for the class of all $\mathscr{L}_2 (\varsigma)$-structures with at most $n$ elements and at most $n$ worlds.

Proposition 4.2 (see [1]). $\mathrm{Th}(\mathscr{K}^2_n (\varsigma))$ is decidable, uniformly in $n$.

Our theorems for $\mathscr{L}_2$ will be analogous to those for $\mathscr{L}_1$.

See [1] and [5] for more results about Halpern’s “first-order” logics of probability.

§ 5. Finite spaces

Given a signature $\sigma$, denote by $\mathrm{Sent}_{\sigma}$ the set of all (first-order) $\sigma$-sentences. Following [7], we call $\Gamma \subseteq \mathrm{Sent}_{\sigma}$ hereditarily undecidable if, for every $\Delta \subseteq \mathrm{Sent}_{\sigma}$,

$$ \begin{equation*} \mathrm{Val}_{\sigma} \cap \Gamma \subseteq \Delta \subseteq \Gamma \quad \Longrightarrow \quad \Delta \text{ is undecidable} \end{equation*} \notag $$
(or equivalently, $\mathrm{Val}_{\sigma} \cap \Gamma$ and $\mathrm{Sent}_{\sigma} \setminus \Gamma$ are computably inseparable). This notion can be readily adapted to $\mathsf{QPL}^{\mathrm{e}}$, $\mathscr{L}_1$ and $\mathscr{L}_2$.

In particular, let $\sigma$ be $\langle R^2 \rangle$, where $R$ is a binary predicate symbol. By a simple graph we mean a $\sigma$-structure $\mathfrak{G}$ such that $R^{\mathfrak{G}}$, that is, the interpretation of $R$ in $\mathfrak{G}$, is irreflexive and symmetric. We take $\mathbf{G}_{\mathrm{fin}}$ to be the class of all finite simple graphs.

Theorem 5.1 (see [7]). $\Sigma_2 \text{-} \mathrm{Th}(\mathbf{G}_{\mathrm{fin}})$ is hereditarily undecidable.6

We want to have the same for the $\Sigma_2$-fragment of the $\mathsf{QPL}^{\mathrm{e}}$-theory of finite probability spaces. A key role in our argument will be played by the following result.

Proposition 5.2. There are an existential $\mathsf{QPL}^{\mathrm{e}}$-formula $\Phi_{\mathrm{all}}(X)$ and a quantifier-free $\mathsf{QPL}^{\mathrm{e}}$-formula $\Phi_R(X_1, X_2)$ such that, for every $\mathfrak{G} \in \mathbf{G}_{\mathrm{fin}}$, one can find $\mathscr{P} \in \mathcal{K}_{\mathrm{fin}}$ satisfying the following conditions:

a) $H := \{ A\in \mathscr{A} \mid \mathscr{P} \Vdash \Phi_{\mathrm{all}}(A)\}$ is non-empty;

b) the $\sigma$-structure $\mathfrak{H}$ with domain $H$ in which $R$ is interpreted by $\Phi_R(X_1, X_2)$, that is,

$$ \begin{equation*} R^{\mathfrak{H}} = \{(A_1, A_2) \in H^2 \mid \mathscr{P} \Vdash \Phi_R(A_1, A_2)\}, \end{equation*} \notag $$
is isomorphic to $\mathfrak{G}$.

Proof. Consider an arbitrary finite simple graph $\mathfrak{G}$. For convenience, we may assume that
$$ \begin{equation*} G = \{ 1, \dots, N\}, \end{equation*} \notag $$
where $N$ is the cardinality of7 $G$. Further, the relation $R^{\mathfrak{G}}$, being irreflexive and symmetric, can be identified with
$$ \begin{equation*} R(\mathfrak{G}) := \bigl\{ \{i, j\} \bigm| (i, j) \in R^{\mathfrak{A}} \bigr\}. \end{equation*} \notag $$
Let $K$ be the cardinality of $R(\mathfrak{G})$ and $\nu$ be a one-one function from $R(\mathfrak{G})$ onto $\{1,\dots,K\}$. In this way, each $\{i, j\} \in R(\mathfrak{G})$ is coded by $\nu(\{i, j\})$. Given $n \in G$, we define
$$ \begin{equation*} I_n := \bigl\{ \nu(\{m,n\}) \bigm| \{m, n\} \in R(\mathfrak{G})\bigr\}, \end{equation*} \notag $$
that is, $I_n$ is the set of all codes of edges that are incident on $n$.

We begin by describing a suitable finite probability space $\mathscr{P}$, and then show how the desired quantifier-free $\mathsf{QPL}^{\mathrm{e}}$-formulas emerge. Take $\Omega$ to be a set of cardinality $N + K + 3$, say

$$ \begin{equation*} \Omega := \{\gamma_1, \dots, \gamma_N\} \cup \{\delta_1, \dots, \delta_K\} \cup \{ \lambda_1, \lambda_2, \lambda_{\ast}\}, \end{equation*} \notag $$
and define $\mathsf{p}\colon \Omega \to [0,1]$ by
$$ \begin{equation*} \begin{gathered} \, \mathsf{p}(\gamma_n) := r - \sum_{k \in I_n} \frac{r}{3^k}, \qquad \mathsf{p}(\delta_k):= \frac{r}{3^k}, \\ \mathsf{p}(\lambda_1) := \frac{r}{2}, \qquad \mathsf{p}(\lambda_2) := \frac{1}{3} - \frac{r}{2} \quad \text{and} \quad \mathsf{p}(\lambda_{\ast}) := \frac{2}{3} - \sum_{n = 1}^N \mathsf{p}(\gamma_n) - \sum_{k = 1}^K \mathsf{p}(\delta_k), \end{gathered} \end{equation*} \notag $$
where $r$ equals $1/(6N+3)$, just to make everything work. Observe that
$$ \begin{equation*} \begin{aligned} \, &\sum_{n = 1}^N \mathsf{p}(\gamma_n) + \sum_{k = 1}^K \mathsf{p}(\delta_k) = \sum_{n = 1}^N \biggl(r - \sum_{k \in I_n} \frac{r}{3^k} \biggr) + \sum_{k = 1}^K \frac{r}{3^k} \\ &\qquad< N \cdot r + \frac{r}{2} = \biggl( N + \frac{1}{2} \biggr) \cdot r = \frac{2N + 1}{2} \cdot r = \frac{2N + 1}{2 \cdot (6N + 3)} = \frac{1}{2 \cdot 3} = \frac{1}{6} \end{aligned} \end{equation*} \notag $$
(hence, in particular, $0 \leqslant \mathsf{p}(\lambda_{\ast}) \leqslant 1$). Moreover, we have $\sum_{\omega \in \Omega} \mathsf{p} (\omega) = 1$. Let $\mathscr{P} = \langle \mathscr{A}, \mathsf{P} \rangle$ be the corresponding discrete space; so $\mathscr{A}$ is the power set of $\Omega$, and $\mathsf{P}\colon \mathscr{A} \to [0,1]$ is given by
$$ \begin{equation*} \mathsf{P}(A) := \sum_{\omega \in A} \mathsf{p}(\omega). \end{equation*} \notag $$
Then $\{\lambda_1\}$ and $\{\lambda_2\}$ can be distinguished from the other events in $\mathscr{A}$ by using the quantifier-free $\mathsf{QPL}^{\mathrm{e}}$-formula
$$ \begin{equation*} \Phi_{\circ}(U, V) := \mu(U \wedge V) = 0 \wedge 3 \mu( U \vee V) = 1 \wedge 0 < \mu(U) < \mu(V). \end{equation*} \notag $$
To put it formally.

Claim 1. Let $\mathfrak{G}$ and $\mathscr{P}$ be as above. Then, for any $A_1, A_2 \in \mathscr{A}$,

$$ \begin{equation*} \mathscr{P} \Vdash \Phi_{\circ}(A_1, A_2)\quad \Longleftrightarrow \quad A_1 = \{\lambda_1\} \quad \textit{and} \quad A_2 = \{\lambda_2\}. \end{equation*} \notag $$

Proof. $\Longleftarrow$. Obviously, $\mathsf{P}(\{\lambda_1\} \cap \{\lambda_2\}) = 0$, $\mathsf{P}(\{\lambda_1\} \cup \{\lambda_2\}) = 1/3$ and $\mathsf{P}(\{\lambda_1\})> 0$. Moreover, since $r \leqslant 1/9$, we also have
$$ \begin{equation*} \mathsf{p} (\lambda_1) \leqslant \frac{1}{9 \cdot 2} = \frac{1}{18} \quad \text{and} \quad \mathsf{p} (\lambda_2) \geqslant \frac{1}{3} - \frac{1}{18} = \frac{5}{18}. \end{equation*} \notag $$
These imply $\mathsf{P}(\{\lambda_1\}) < \mathsf{P}(\{\lambda_2\})$.

$\Longrightarrow$. Suppose that $\mathsf{P}(A_1 \cap A_2) = 0$, $\mathsf{P}(A_1 \cup A_2) = 1/3$ and $0 < \mathsf{P}(A_1) < \mathsf{P}(A_2)$. Clearly, if $\{\lambda_1, \lambda_2\} \subseteq A_1 \cup A_2$, then $A_1 = \{\lambda_1\}$ and $A_2 = \{\lambda_2\}$. Thus it suffices to show that both $\lambda_1$ and $\lambda_2$ belong to $A_1 \cup A_2$. First, note that $\lambda_{\ast}$ cannot be in $A_1 \cup A_2$, since

$$ \begin{equation*} \mathsf{p}(\lambda_{\ast}) > \frac{2}{3} - \frac{1}{6} = \frac{1}{2}. \end{equation*} \notag $$
Now if $\lambda_2 \notin A_1 \cup A_2$, then
$$ \begin{equation*} \mathsf{P}(A_1 \cup A_2) \leqslant \mathsf{P}(\Omega \setminus \{\lambda_2, \lambda_{\ast}\}) = 1 - \mathsf{p} (\lambda_2) - \mathsf{p}(\lambda_{\ast}) < 1 - \frac{5}{18} - \frac{1}{2} = \frac{2}{9}, \end{equation*} \notag $$
which is a contradiction. Hence $\lambda_2 \in A_1 \cup A_2$, and therefore
$$ \begin{equation*} \mathsf{P}((A_1 \cup A_2) \setminus \{\lambda_2\}) = \mathsf{P}(A_1 \cup A_2) - \mathsf{p} (\lambda_2) = \frac{r}{2}. \end{equation*} \notag $$
Further, for each $n \in \{1, \dots, N\}$, $\gamma_n$ cannot be in $A_1 \cup A_2$, since $\mathsf{p}(\gamma_n) > r - r/2 = r/2$. So, if $\lambda_1$ is not in $A_1 \cup A_2$, then
$$ \begin{equation*} \mathsf{P}((A_1 \cup A_2) \setminus \{\lambda_2\})\leqslant \mathsf{P}(\{\delta_1, \dots, \delta_K\}) = \sum_{k=1}^K \frac{r}{3^k} < \frac{r}{2}, \end{equation*} \notag $$
which is a contradiction. Hence $\lambda_1 \in A_1 \cup A_2$. $\Box$

Next, with each $n \in G$ we associate the event

$$ \begin{equation*} {[\![ n ]\!]}\ :=\ {\left\{ \gamma_n \right\} \cup \left\{ \delta_k \mid k \in I_n \right\}}. \end{equation*} \notag $$
Denote by $[\![ \Omega ]\!]$ the collection of all these events. It turns out that $[\![ \Omega ]\!]$ can be defined in $\mathscr{P}$ by the existential $\mathsf{QPL}^{\mathrm{e}}$-formula
$$ \begin{equation*} {\Phi_{\mathrm{all}} (X)}\ :=\ {\exists U}\, {\exists V}\, {\left( \Phi_{\circ} \left( U, V \right) \wedge \mu (X) = 2 \mu \left( U \right) \right)}, \end{equation*} \notag $$
which has the same meaning as $\mu (X) = r$, of course.

Claim 2. Let $\mathfrak{G}$ and $\mathscr{P}$ be as above. Then, for every $A \in \mathscr{A}$,

$$ \begin{equation*} \mathscr{P} \Vdash \Phi_{\mathrm{all}}(A) \quad \Longleftrightarrow \quad A\in [\![ \Omega ]\!]. \end{equation*} \notag $$

Proof. $\Longleftarrow$. By the construction of $[\![ \Omega ]\!]$.

$\Longrightarrow$. Suppose that $\mathsf{P} (A) = r$. Recall that

$$ \begin{equation*} r< \frac{1}{9}, \qquad {\mathsf{p} (\lambda_2)}\geqslant \frac{5}{18} \quad \text{and} \quad \mathsf{p} (\lambda_{\ast})>\frac{1}{2}. \end{equation*} \notag $$
So, neither $\lambda_2$ nor $\lambda_{\ast}$ can be in $A$. Moreover, if $\lambda_1 \in A$, then
$$ \begin{equation*} \mathsf{P}(A \setminus \{\lambda_1\})= \mathsf{P} (A) - \mathsf{p} (\lambda_1)= \frac{r}{2}, \end{equation*} \notag $$
which implies that $\gamma_1, \dots, \gamma_N$ do not belong to $A$ (since $\mathsf{p}(\gamma_n) > r/2$ for each $n \in \{ 1, \dots, N\}$), and therefore
$$ \begin{equation*} \mathsf{P}(A \setminus \{\lambda_1\}) \leqslant \mathsf{P}(\{\delta_1, \dots, \delta_K\})< \frac{r}{2}, \end{equation*} \notag $$
which is a contradiction. Hence $\lambda_1$ cannot be in $A$ as well. To summarize, we have
$$ \begin{equation*} A\subseteq \{\gamma_1, \dots, \gamma_N\} \cup \{\delta_1, \dots, \delta_K\}. \end{equation*} \notag $$
Clearly, there exists precisely one $n \in \{1, \dots, N\}$ such that $\gamma_n \in A$. This gives us
$$ \begin{equation*} A\setminus \{\gamma_n\} \subseteq \{\delta_1, \dots, \delta_K\} \quad \text{and} \quad \mathsf{P}(A \setminus \{\gamma_n\})= \sum_{k \in I_n} \frac{r}{3^k}. \end{equation*} \notag $$
It is easy to verify that $A \setminus \{\gamma_n\}$ equals $\{\delta_k \mid k \in I_n\}$. Thus $A$ coincides with $[\![ n ]\!]$. $\Box$

Finally, observe that, for all $i, j \in G$,

$$ \begin{equation*} \begin{aligned} \, (i, j)\in R^{\mathfrak{G}} \quad &\Longleftrightarrow \quad \{i,j\}\in R(\mathfrak{G}) \\ &\Longleftrightarrow \quad i \ne j \text{ and } I_i \cap I_j \ne \varnothing \\ &\Longleftrightarrow \quad i \ne j \text{ and } [\![ i ]\!] \cap [\![ j ]\!] \ne \varnothing \\ &\Longleftrightarrow \quad 0< \mathsf{P}([\![ i ]\!] \cap [\![ j ]\!]) < \mathsf{P}([\![ i ]\!] \cup [\![ j ]\!]). \end{aligned} \end{equation*} \notag $$
So, we can take
$$ \begin{equation*} \Phi_R(X_1, X_2) := 0 < \mu(X_1 \wedge X_2) < \mu(X_1 \vee X_2). \end{equation*} \notag $$
Then the corresponding $\sigma$-structure $\mathfrak{H}$ (as in the statement of the proposition) turns out to be isomorphic to $\mathfrak{G}$ via the mapping $n \mapsto [\![ n ]\!]$. $\Box$

Now we are ready to obtain the desired result.

Theorem 5.3. $\Sigma_2 \text{-} \mathrm{Th}(\mathcal{K}_{\mathrm{fin}})$ is hereditarily undecidable.

Proof. For convenience, we shall assume that the logical connective symbols in classical first-order logic are the same as those in $\mathsf{QPL}$ (namely $\wedge$, $\vee$, $\neg$) and associate with each individual variable $x$ a distinguished Boolean variable $X$.

Let $\Phi_{\mathrm{all}} (X)$ and $\Phi_R (X_1,X_2)$ be as in the statement of Proposition 5.2. Given a $\sigma$-sentence $\Phi$, we define $\tau (\Phi)$ recursively by

$$ \begin{equation*} \begin{aligned} \, \tau (R(x,y)) &:=\Phi_R (X,Y), \\ \tau(\Psi \wedge \Theta)&:= \tau (\Psi) \wedge \tau (\Theta), \\ \tau(\Psi \vee \Theta) &:= \tau (\Psi) \vee \tau (\Theta), \\ \tau(\neg\, \Psi) &:= \neg\, \tau (\Psi), \\ \tau(\forall\, x \Psi) &:= \forall\, X\ (\Phi_{\mathrm{all}} (X) \to \tau (\Psi)), \\ \tau(\exists\, x\ \Psi) &:= \exists\, X\ (\Phi_{\mathrm{all}} (X) \wedge \tau (\Psi)). \end{aligned} \end{equation*} \notag $$
To avoid clashes of variables, we require that $\Phi$ contain no occurrences of the individual variables whose uppercase versions are bound in $\Phi_{\mathrm{all}} (X)$ or $\Phi_R (X_1,X_2)$. Take
$$ \begin{equation*} \tau^{\ast} (\Phi) :=\Phi_{\mathrm{spec}} \to \tau (\Phi), \end{equation*} \notag $$
where $\Phi_{\mathrm{spec}}$ denotes the “specification” sentence
$$ \begin{equation*} \exists\, X\ \Phi_{\mathrm{all}} (X) \wedge \forall\, X\ \neg\, \Phi_R(X,X) \wedge \forall\, X_1\ \forall\, X_2\ (\Phi_R(X_1,X_2) \to \Phi_R(X_2,X_1)). \end{equation*} \notag $$
Observe that, for every $\sigma$-sentence $\Phi$,
$$ \begin{equation*} \begin{aligned} \, \Phi\in \mathrm{Val}_{\sigma} \quad \Longrightarrow \quad &\tau^{\ast}(\Phi)\in \mathrm{Val}^{\mathrm{e}}, \\ \Phi\in \mathrm{Th}(\mathbf{G}_{\mathrm{fin}})\quad \Longleftrightarrow \quad &\tau^{\ast}(\Phi)\in \mathrm{Th}(\mathcal{K}_{\mathrm{fin}}). \end{aligned} \end{equation*} \notag $$
And if $\Phi$ is in $\Sigma_2$, then we can effectively convert $\tau^{\ast} (\Phi)$ to an equivalent $\Sigma_2$-$\mathsf{QPL}^{\mathrm{e}}$-sentence $\rho (\Phi)$. In this way $\rho$ maps the $\Sigma_2$-$\sigma$-sentences into the $\Sigma_2$-$\mathsf{QPL}^{\mathrm{e}}$-sentences.

Now suppose $\Delta$ is such that $\Sigma_2 \text{-} \mathrm{Val}^{\mathrm{e}} \subseteq \Delta \subseteq \Sigma_2 \text{-} \mathrm{Th}(\mathcal{K}_{\mathrm{fin}})$. Clearly, we have

$$ \begin{equation*} \Sigma_2 \text{-} \mathrm{Val}_{\sigma} \subseteq \rho^{-1}[\Delta] \subseteq \Sigma_2 \text{-} \mathrm{Th}(\mathbf{G}_{\mathrm{fin}}). \end{equation*} \notag $$
Therefore $\rho^{-1}[\Delta]$ cannot be decidable. Evidently, $\rho^{-1}[\Delta]$ is reducible to $\Delta$ via $\rho$. It follows that $\Delta$ must be undecidable, as desired. $\Box$

It is known that $\Sigma_2 \text{-} \mathrm{Th}(\mathbf{G}_{\mathrm{fin}})$ is $\Pi^0_1$-complete; see Theorem 4.2 in [7] and Corollary 3.8 in [12]. This quickly leads us to the following result.

Corollary 5.4. $\Sigma_2 \text{-} \mathrm{Th}(\mathcal{K}_{\mathrm{fin}})$ is $\Pi^0_1$-complete.

Proof. Let $\rho$ be as in the proof of Theorem 5.3. Obviously, $\rho$ reduces $\Sigma_2 \text{-} \mathrm{Th}(\mathbf{G}_{\mathrm{fin}})$ to $\Sigma_2 \text{-} \mathrm{Th}(\mathcal{K}_{\mathrm{fin}})$; hence $\Sigma_2 \text{-} \mathrm{Th}(\mathcal{K}_{\mathrm{fin}})$ is $\Pi^0_1$-hard. On the other hand, $\Sigma_2 \text{-} \mathrm{Th}(\mathcal{K}_{\mathrm{fin}})$ is trivially reducible to $\mathrm{Th}(\mathcal{K}_{\mathrm{fin}})$, which is $\Pi^0_1$-bounded by Proposition 2.3. $\Box$

At the same time, Theorem 5.3 implies the undecidability of the validity problem for $\Sigma_2$-$\mathsf{QPL}^{\mathrm{e}}$-sentences. In view of Theorem 2.4, this means that $\Sigma_2$ is the minimal undecidable prefix fragment of $\mathsf{QPL}^{\mathrm{e}}$, which completes the analysis of the decision problem for $\mathsf{QPL}^{\mathrm{e}}$.

§ 6. Finite structures of type 1

Next, we wish to adapt the technique developed in the previous section to deal with $\mathscr{L}_1$. Instead of Proposition 5.2, we shall use the following result.

Proposition 6.1. Let $\varsigma$ be $\langle = \rangle$. Then there are existential $\mathscr{L}_1 (\varsigma)$-formulas

$$ \begin{equation*} \Phi_{\mathrm{all}}(x), \quad \Phi_R^1 (x_1,x_2) \quad \textit{and} \quad \Phi_R^0 (x_1,x_2) \end{equation*} \notag $$
such that, for every $\mathfrak{G} \in \mathbf{G}_{\mathrm{fin}}$, one can find $\mathcal{M} \in \mathscr{K}^1_{\mathrm{fin}} (\varsigma)$ satisfying the following conditions:

a) $H := \{d \in D \mid \mathcal{M} \Vdash \Phi_{\mathrm{all}}(d)\}$ is non-empty;

b) for all $d_1, d_2 \in H$,

$$ \begin{equation*} \mathcal{M} \Vdash \Phi_R^1 (d_1,d_2)\quad \Longleftrightarrow \quad\mathcal{M} \nVdash \Phi_R^0 (d_1,d_2); \end{equation*} \notag $$

c) the $\sigma$-structure $\mathfrak{H}$ with domain $H$ in which $R$ is interpreted by $\Phi_R^1 (x_1,x_2)$, that is,

$$ \begin{equation*} R^{\mathfrak{H}}= \{ (d_1,d_2) \in H^2 \mid \mathcal{M} \Vdash \Phi_R^1 (d_1,d_2)\}, \end{equation*} \notag $$
is isomorphic to $\mathfrak{G}$.

Proof. Since $\varsigma$ is fixed by the context, we shall write $\mathscr{L}_1$ instead of $\mathscr{L}_1 (\varsigma)$.

Consider an arbitrary finite simple graph $\mathfrak{G}$. As before, we may assume that $G = \{ 1, \dots, N \}$, where $N$ is the cardinality of $G$, and also identify the relation $R^{\mathfrak{A}}$ with

$$ \begin{equation*} R(\mathfrak{G}) := \bigl\{ \{i,j\} \bigm| (i,j) \in R^{\mathfrak{A}}\bigr\}. \end{equation*} \notag $$
Denote by $G_2$ the collection of all subsets of $G$ containing exactly two elements. For each $S \in G_2$, let $\varepsilon_S$ tell us whether or not $S$ belongs to $R(\mathfrak{G})$:
$$ \begin{equation*} \varepsilon_S := \begin{cases} 1 &\text{if } S \in R(\mathfrak{G}), \\ 0 &\text{otherwise}. \end{cases} \end{equation*} \notag $$
Now we are ready to describe a suitable finite $\mathscr{L}_1$-structure $\mathcal{M}$. Take
$$ \begin{equation*} \Omega := \{\gamma_n \mid n \in G\} \cup \{ \delta_S \mid S \in G_2 \} \cup \{ \lambda_1, \lambda_2, \lambda_{\ast} \}, \end{equation*} \notag $$
and define $\mathsf{p}: \Omega \to [0,1]$ by
$$ \begin{equation*} \begin{gathered} \, \mathsf{p}(\gamma_n) := r - \frac{r}{3^n}, \qquad \mathsf{p}(\delta_{\{i,j\}}) := \frac{r}{3^i} + \frac{r}{3^j} + \varepsilon_{\{i,j\}} \cdot r, \\ \mathsf{p}(\lambda_1) := \frac{r}{2}, \qquad \mathsf{p} (\lambda_2) := \frac{1}{3} - \frac{r}{2} \quad \text{and} \quad \mathsf{p} (\lambda_{\ast}) := \frac{2}{3} - \sum_{n = 1}^N \mathsf{p}(\gamma_n) - \sum_{S \in G_2} \mathsf{p}(\delta_S), \end{gathered} \end{equation*} \notag $$
where $r$ equals $1/(6N^2 + 3)$. Observe that
$$ \begin{equation*} \begin{aligned} \, &\sum_{n = 1}^N \mathsf{p}(\gamma_n) + \sum_{S \in G_2} \mathsf{p}(\delta_S) = \sum_{n = 1}^N \biggl(r - \frac{r}{3^n}\biggr) + \sum_{i = 1}^{N-1} \sum_{j = i+1}^N\biggl( \frac{r}{3^i} + \frac{r}{3^j} + \varepsilon_{\{i,j\}} \cdot r \biggr) \\ &\qquad< N \cdot r + \frac{N \cdot (N-1)}{2} \cdot \biggl( \frac{r}{2} + r \biggr) = N \cdot r + N \cdot (N - 1) \cdot \frac{3r}{4} \\ &\qquad< N \cdot r + N \cdot (N - 1) \cdot r = N^2 \cdot r= \frac{N^2}{6N^2 + 3}< \frac{1}{6}. \end{aligned} \end{equation*} \notag $$
Trivially, we have $\sum_{\omega \in \Omega} \mathsf{p} (\omega) = 1$. Let $\mathcal{M}$ be the $\mathscr{L}_1$-structure $\langle D, \pi, \mathsf{p} \rangle$, where $D$ coincides with $\Omega$, and $\pi$ is a (unique) $\varsigma$-structure with domain $D$. Similarly to before, we can distinguish $\lambda_1$ and $\lambda_2$ from the other elements of $D = \Omega$ by using the quantifier-free $\mathscr{L}_1$-formula
$$ \begin{equation*} \begin{aligned} \, \Phi_{\circ} (u,v) &:= \mu_z( z = u \wedge z = v) = 0 \wedge 3 \mu_z( z = u \vee z = v) = 1 \\ &\qquad \wedge 0 < \mu_z (z = u) < \mu_z( z = v). \end{aligned} \end{equation*} \notag $$
To be precise, it is easy to show that, for all $d_1, d_2 \in D$,
$$ \begin{equation*} \mathcal{M} \Vdash \Phi_{\circ} (d_1,d_2) \quad \Longleftrightarrow \quad d_1 = \lambda_1 \ \ \text{and} \ \ d_2 = \lambda_2; \end{equation*} \notag $$
cf. the proof8 of Claim 1 (in the proof of Proposition 5.2).

Intuitively, we are going to identify each $n \in G$ with $\gamma_n$. Note that $\{ \gamma_1, \dots, \gamma_N \}$ can be defined in $\mathcal{M}$ by the existential $\mathscr{L}_1$-formula

$$ \begin{equation*} \Phi_{\mathrm{all}} (x) := \exists\, u\ \exists\, v\ \bigl(\Phi_{\circ} (u,v) \wedge \mu_z (z = u) < \mu_z(z = x) < 2 \mu_z(z = u)\bigr), \end{equation*} \notag $$
which has the same meaning as $r/2 < \mu_z(z = x) < r$.

Next, observe that, for every $\{i,j\} \in G_2$, there exists a unique $\omega \in \Omega$ satisfying

$$ \begin{equation} \mathsf{p}(\omega)= \frac{r}{3^i} + \frac{r}{3^j} + r \quad \text{or} \quad \mathsf{p}(\omega)= \frac{r}{3^i} + \frac{r}{3^j}. \end{equation} \tag{$\dagger$} $$
The existence of $\omega$ is obvious, since we can substitute $\delta_{\{i,j\}}$ for $\omega$. As for the uniqueness, suppose that $\omega$ satisfies $(\dagger)$. So, in particular, either $r < \mathsf{p} (\omega) < {3r}/2$ or $\mathsf{p} (\omega) < r/2$.

Thus the only element of $\Omega$ that satisfies ($\unicode{8224}$) is $\delta_{\{i,j\}}$. In addition, we have

$$ \begin{equation*} \begin{aligned} \, \varepsilon_{\{i,j\}}= \varepsilon \quad &\Longleftrightarrow \quad \mathsf{p}(\delta_{\{i,j\}}) = \frac{r}{3^i} + \frac{r}{3^j} + \varepsilon \cdot r \\ &\Longleftrightarrow \quad \mathsf{p} (\gamma_i) + \mathsf{p} (\gamma_j) + \mathsf{p} (\delta_{\{i,j\}}) = (2 + \varepsilon) \cdot r \\ &\Longleftrightarrow \quad \mathsf{p}(\gamma_i) + \mathsf{p} (\gamma_j) + \mathsf{p} (\delta_{\{i,j\}}) = (4 + 2 \varepsilon) \cdot \mathsf{p} (\lambda_1), \end{aligned} \end{equation*} \notag $$
where $\varepsilon$ is either $0$ or $1$. Finally, take
$$ \begin{equation*} \begin{aligned} \, \Phi_R^{\varepsilon} (x_1, x_2, y) &:= \exists\, u\ \exists\, v\ \exists\, y\ \bigl( \Phi_{\circ} (u,v) \wedge \mu_z( z = x_1 \wedge z = x_2) = 0 \\ &\qquad\wedge \mu_z(z = x_1 \vee z = x_2 \vee z = y) = (4 + 2 \varepsilon) \mu_z (z = u)\bigr). \end{aligned} \end{equation*} \notag $$
It follows that $\Phi_{\mathrm{all}} (x)$, $\Phi_R^1 (x_1,x_2)$, and $\Phi_R^0 (x_1,x_2)$ do the job. $\Box$

Naturally, since we have two formulas for $R$, the corresponding translation should be slightly more subtle than that of Theorem 5.3; cf. also Lemma 3.1 in [7].

Theorem 6.2. Suppose that $\varsigma$ contains the equality symbol. Then $\Sigma_2 \text{-} \mathrm{Th} (\mathscr{K}^1_{\mathrm{fin}} (\varsigma))$ is hereditarily undecidable.

Proof. Recall that we treat $\to$ as defined, rather than primitive.

Let $\Phi_{\mathrm{all}} (x)$, $\Phi_R^1 (x_1,x_2)$ and $\Phi_R^0 (x_1,x_2)$ be as in the statement of Proposition 6.1. Now, given a $\sigma$-sentence $\Phi$, we define $\tau (\Phi)$ by

$$ \begin{equation*} \begin{alignedat}{2} & &\qquad \tau(R(x,y)) &:= \neg\, \Phi_R^0 (x,y), \\ \tau(\neg \neg \,\Psi) &:= \tau(\Psi), &\qquad \tau( \neg\, R(x,y)) &:= \neg\, \Phi_R^1 (x,y), \\ \tau(\neg\,(\Psi \wedge \Theta)) &:= \tau(\neg\, \Psi \vee \neg\, \Theta), &\qquad \tau( \Psi \wedge \Theta) &:= \tau(\Psi) \wedge \tau(\Theta), \\ \tau(\neg\, (\Psi \vee \Theta)) &:= \tau(\neg\, \Psi \wedge \neg \, \Theta), &\qquad \tau(\Psi \vee \Theta) &:= \tau(\Psi) \vee \tau (\Theta), \\ \tau(\neg\, \forall\, x\ \Psi) &:= \tau(\exists\, x\ \neg\, \Psi), &\qquad \tau(\forall\, x\ \Psi) &:= \forall \, x \ (\Phi_{\mathrm{all}} (x) \to \tau (\Psi)), \\ \tau(\neg\, \exists x\, \Psi) &:= \tau( \forall\, x\ \neg \Psi), &\qquad \tau(\exists\, x\ \Psi) &:= \exists \, x\ (\Phi_{\mathrm{all}}(x) \wedge \tau(\Psi)) \end{alignedat} \end{equation*} \notag $$
(avoiding clashes of variables, of course). Clearly, if $\Phi$ is quantifier-free, then $\tau (\Phi)$ is equivalent to a $\Pi_1$-$\mathscr{L}_1 (\varsigma)$-formula. Take
$$ \begin{equation*} \tau^{\ast} (\Phi) := \Phi_{\mathrm{spec}} \to \tau (\Phi), \end{equation*} \notag $$
where $\Phi_{\mathrm{spec}}$ denotes the “specification” sentence
$$ \begin{equation*} \begin{aligned} \, &\exists\, x\ \Phi_{\mathrm{all}} (x) \wedge \forall\, x_1\ \forall\, x_2\ \bigl( \Phi_R^1 (x_1,x_2) \leftrightarrow \Phi_R^0 (x_1,x_2) \bigr) \\ &\qquad \wedge \forall\, x\ \neg\, \Phi_R^1 (x,x) \wedge \forall\, x_1\ \forall\, x_2\ \bigl( \Phi_R^1 (x_1,x_2) \to \Phi_R^1 (x_2,x_1) \bigr). \end{aligned} \end{equation*} \notag $$
We proceed as in the proof of Theorem 5.3. $\Box$

In addition, we have the following result.

Corollary 6.3. Suppose that $\varsigma$ contains the equality symbol. Then $\Sigma_2 \text{-} \mathrm{Th}(\mathscr{K}^1_{\mathrm{fin}} (\varsigma))$ is $\Pi^0_1$-complete.

Proof. The argument is like that for Corollary 5.4, except that we use Proposition 3.2 instead of Proposition 2.3. $\Box$

Evidently, the condition “$\varsigma$ contains the equality symbol” can be replaced by “$\varsigma$ contains at least one predicate symbol of arity greater than or equal to $2$.” On the other hand, as was proved in [1] (by using a representation result from [5]), if $\varsigma$ consists only of unary predicate symbols, then the validity problem for $\mathscr{L}_1 (\varsigma)$-sentences, and even those in the full language of § 2 in [1] over $\varsigma$, is decidable.

Consequently, for every sufficiently rich $\varsigma$, the validity problem for $\Sigma_2$-$\mathscr{L}_1 (\varsigma)$-sentences is undecidable. It will be shown in § 8 that this cannot be improved.

§ 7. Finite structures of type 2

In the case of $\mathscr{L}_2$, we shall need two analogues of Proposition 5.2. This might be expected because of the richness conditions in [1].

Proposition 7.1. Let $\varsigma$ be $\langle =; c \rangle$, where $c$ is a constant symbol. Then there are existential $\mathscr{L}_2 (\varsigma)$-formulas

$$ \begin{equation*} \Phi_{\mathrm{all}} (x), \quad \Phi_R^1 (x_1,x_2), \quad \textit{and} \quad \Phi_R^0 (x_1,x_2) \end{equation*} \notag $$
such that, for every $\mathfrak{G} \in \mathbf{G}_{\mathrm{fin}}$, one can find $\mathcal{M} \in \mathscr{K}^2_{\mathrm{fin}} (\varsigma)$ satisfying the following conditions:

a) $H := \{ d \in D \mid \mathcal{M} \Vdash \Phi_{\mathrm{all}}(d)\}$ is non-empty;

b) for all $d_1, d_2 \in H$,

$$ \begin{equation*} \mathcal{M} \Vdash \Phi_R^0 (d_1,d_2) \quad \Longleftrightarrow \quad \mathcal{M} \nVdash \Phi_R^1 (d_1,d_2); \end{equation*} \notag $$

c) the $\sigma$-structure $\mathfrak{H}$ with domain $H$ in which $R$ is interpreted by $\Phi_R^1 (x_1,x_2)$, that is,

$$ \begin{equation*} R^{\mathfrak{H}}= \{ (d_1,d_2) \in H^2 \mid \mathcal{M} \Vdash \Phi_R^1 (d_1,d_2) \}, \end{equation*} \notag $$
is isomorphic to $\mathfrak{G}$.

Proof. The argument is like that for Proposition 6.1, except that:

In fact, a similar trick was used in [1] to transfer certain complexity results. $\Box$

It gives us two formulas for $R$, as in Proposition 6.1.

Theorem 7.2. Suppose that $\varsigma$ extends $\langle =; c \rangle$. Then $\Sigma_2 \text{-} \mathrm{Th}(\mathscr{K}^2_{\mathrm{fin}} (\varsigma))$ is hereditarily undecidable.

The proof is similar to that of Theorem 6.2.

In addition, we have the following result.

Corollary 7.3. Suppose that $\varsigma$ extends $\langle =; c \rangle$. Then $\Sigma_2 \text{-} \mathrm{Th}(\mathscr{K}^2_{\mathrm{fin}} (\varsigma))$ is $\Pi^0_1$-complete.

Proof. The argument is like that for Corollary 5.4, except that we use Proposition 4.2 instead of Proposition 2.3. $\Box$

Here is another analogue of Proposition 5.2.

Proposition 7.4. Let $\varsigma$ be $\langle P^1 \rangle$, where $P$ is a unary predicate symbol, and take

$$ \begin{equation*} \Phi_R (x_1,x_2) := 0 < \mu( P (x_1) \wedge P (x_2)) < \mu(P (x_1) \vee P (x_2)). \end{equation*} \notag $$
Then, for every $\mathfrak{G} \in \mathbf{G}_{\mathrm{fin}}$, one can find $\mathcal{M} \in \mathscr{K}^2_{\mathrm{fin}} (\varsigma)$ such that the $\sigma$-structure $\mathfrak{H}$ with domain $D$ (the first component of $\mathcal{M}$) in which $R$ is interpreted by $\Phi_R (x_1,x_2)$, that is,
$$ \begin{equation*} R^{\mathfrak{H}}= \{ (d_1,d_2) \in D^2 \mid \mathcal{M} \Vdash \Phi_R (d_1,d_2) \}, \end{equation*} \notag $$
is isomorphic to $\mathfrak{G}$.

Proof. We shall apply a simplified version of the argument for Proposition 5.2.

Consider an arbitrary finite simple graph $\mathfrak{G}$. Let $\Omega$, $\mathsf{p}$ and $[\![ \,{\cdot}\, ]\!]$ be as in the proof of Proposition 5.2. For each $\omega \in \Omega$, define $\pi (\omega)$ to be the $\varsigma$-structure with domain $G$ in which $P$ is interpreted as $\{ n \in G \mid \omega \in [\![ n ]\!] \}$. So, by construction, for every $n \in G$,

$$ \begin{equation*} \{ \omega \in \Omega \mid \pi (\omega) \vDash P(n)\}= [\![ n ]\!]. \end{equation*} \notag $$
Let $\mathcal{M}$ be the $\mathscr{L}_2 (\varsigma)$-structure $\langle D, \Omega, \pi, \mathsf{p} \rangle$, where $D$ coincides with $G$. Then, for all $i, j \in G$,
$$ \begin{equation*} \begin{aligned} \, (i,j)\in R^{\mathfrak{G}} \quad \Longleftrightarrow {}&\quad 0 < \mathsf{P}([\![ i ]\!] \cap [\![ j ]\!]) < \mathsf{P}([\![ i ]\!] \cup [\![ j ]\!]) \\ \Longleftrightarrow {}&\quad 0< \mathsf{P}(\{ \omega \in \Omega \mid \pi (\omega) \vDash P(i) \wedge P(j)\}) \\ &\quad\hphantom{0}< \mathsf{P}(\{\omega \in \Omega \mid \pi (\omega) \vDash P(i) \vee P(j)\}) \\ \Longleftrightarrow {}&\quad \mathcal{M} \Vdash \Phi_R (i,j), \end{aligned} \end{equation*} \notag $$
as desired. $\Box$

Naturally, the corresponding translation is going to be simpler.

Theorem 7.5. Suppose that $\varsigma$ extends $\langle P^1 \rangle$. Then $\Sigma_2 \text{-} \mathrm{Th}(\mathscr{K}^2_{\mathrm{fin}} (\varsigma))$ is hereditarily undecidable.

Proof. Let $\Phi_R (x_1,x_2)$ be as in the statement of Proposition 7.4. Given a $\sigma$-sentence $\Phi$, define $\rho (\Phi)$ to be the result of replacing each $R (x,y)$ in $\Phi$ by $\Phi_R (x,y)$. Take
$$ \begin{equation*} \tau^{\ast} (\Phi) := \Phi_{\mathrm{spec}} \to \tau (\Phi), \end{equation*} \notag $$
where $\Phi_{\mathrm{spec}}$ denotes the “specification” sentence
$$ \begin{equation*} \forall\, x\ \neg \Phi_R (x,x) \wedge \forall\, x_1\ \forall\, x_2\ (\Phi_R (x_1,x_2) \to \Phi_R (x_2,x_1)). \end{equation*} \notag $$
Then one can proceed as in the proof of Theorem 5.3. $\Box$

Of course, we also have the following result.

Corollary 7.6. Suppose that $\varsigma$ extends $\langle P^1 \rangle$. Then $\Sigma_2 \text{-} \mathrm{Th}(\mathscr{K}^2_{\mathrm{fin}} (\varsigma))$ is $\Pi^0_1$-complete.

Evidently, the condition “$\varsigma$ extends $\langle =, c \rangle$ or $\langle P^1 \rangle$” can be replaced by “$\varsigma$ does not coincide with $\langle = \rangle$”. On the other hand, it is rather easy to prove that the validity problem for $\mathscr{L}_2( \langle = \rangle )$-sentences is decidable.

Consequently, for every sufficiently rich $\varsigma$, the validity problem for $\Sigma_2$-$\mathscr{L}_2 (\varsigma)$-sentences is undecidable. It will soon be shown that this cannot be improved.

§ 8. Concerning $\Pi_2$-fragments

We aim to prove the analogues of Theorem 2.4 for $\mathscr{L}_1$ and $\mathscr{L}_2$. Technically, it is easier to start with $\mathscr{L}_2$, and then deduce the desired result for $\mathscr{L}_1$ from that for $\mathscr{L}_2$.

Assume $\varsigma$ contains at least one constant symbol. For convenience, we shall write $\mathrm{Sent}_{\varsigma}^{\circ}$ for the collection of all quantifier-free $\sigma$-sentences. Given a $\varsigma$-structure $\mathfrak{A}$, let

$$ \begin{equation*} \mathrm{Th}^{\circ} (\mathfrak{A}) := \{ \Phi \in \mathrm{Sent}_{\varsigma}^{\circ} \mid \mathfrak{A} \vDash \Phi \}. \end{equation*} \notag $$

Now consider an arbitrary $\mathscr{L}_2 (\varsigma)$-structure $\mathcal{M} = \langle D, \Omega, \pi, \mathsf{p} \rangle$. We are going to describe a special $\mathscr{L}_2 (\varsigma)$-structure

$$ \begin{equation*} \mathcal{M}_{\circ} = \langle D_{\circ}, \Omega_{\circ}, \pi_{\circ}, \mathsf{p}_{\circ} \rangle \end{equation*} \notag $$
which satisfies the same quantifier-free $\mathscr{L}_2 (\varsigma)$-sentences. For this purpose, we define the equivalence relation $\equiv$ on $\Omega$ as follows:
$$ \begin{equation*} \omega_1 \equiv \omega_2 \quad :\Longleftrightarrow \quad \mathrm{Th}^{\circ}(\pi (\omega_1))= \mathrm{Th}^{\circ}(\pi (\omega_2)). \end{equation*} \notag $$
For each $\omega \in \Omega$, denote by $[\omega]$ the equivalence class of $\omega$ under $\equiv$. Take $\Omega_{\circ}$ to be the set of all such classes. The discrete distribution $\mathsf{p}_{\circ}$ on $\Omega_{\circ}$ is then given by
$$ \begin{equation*} \mathsf{p}_{\circ} ([\omega]) := \sum_{\omega' \in [\omega]} \mathsf{p}(\omega'). \end{equation*} \notag $$
Finally, let $D_{\circ}$ consist of all constant symbols in $\varsigma$, and for each $\omega \in \Omega$, define $\pi_{\circ} ([\omega])$ to be the $\varsigma$-structure with domain $D_{\circ}$ such that10
$$ \begin{equation*} \begin{aligned} \, c^{\pi_{\circ} ([\omega])} &:= c, \\ P^{\pi_{\circ} ([\omega])} &:= \{ (t_1, \dots, t_n) \in D_{\circ}^n \mid \pi (\omega) \vDash P (t_1, \dots, t_n)\}. \end{aligned} \end{equation*} \notag $$
This completes the description of $\mathcal{M}_{\circ}$. And it is straightforward to verify that, for every quantifier-free $\mathscr{L}_2 (\varsigma)$-sentence $\Phi$,
$$ \begin{equation} \mathcal{M} \Vdash \Phi \quad \Longleftrightarrow \quad \mathcal{M}_{\circ} \Vdash \Phi. \end{equation} \tag{$\star$} $$
From $(\star)$ we can get the finite model property for $\mathscr{L}_2 (\varsigma)$-sentences without quantifiers and, with the help of Proposition 4.2, the corresponding decidability result.

Proposition 8.1. The quantifier-free fragments of $\mathrm{Th}(\mathscr{K}^2_{\mathrm{all}} (\varsigma))$ and $\mathrm{Th}(\mathscr{K}^2_{\mathrm{fin}} (\varsigma))$ coincide. Moreover, the fragment in question is decidable.

Proof. Clearly, we may assume $\varsigma$ is finite, provided that our decision procedure will be uniform in $\varsigma$, of course. Take $N$ to be the number of atomic $\varsigma$-sentences. Then, for any $\mathscr{L}_2 (\varsigma)$-structure $\mathcal{M}$,
$$ \begin{equation*} |D_{\circ}|\leqslant N \quad \text{and} \quad |\Omega_{\circ}| \leqslant 2^N ; \end{equation*} \notag $$
so, in particular, $\mathcal{M}_{\circ}$ is finite.

Let us now consider an arbitrary quantifier-free $\mathscr{L}_2 (\varsigma)$-sentence $\Phi$. Obviously, if $\Phi \in \mathrm{Th}(\mathscr{K}^2_{\mathrm{all}} (\varsigma))$, then $\Phi \in \mathrm{Th}(\mathscr{K}^2_{\mathrm{fin}} (\varsigma))$. For the converse, suppose that $\Phi$ does not belong to $\mathrm{Th}(\mathscr{K}^2_{\mathrm{all}} (\varsigma))$, that is, $\mathcal{M} \nVdash \Phi$ for some $\mathscr{L}_2 (\varsigma)$-structure $\mathcal{M}$. Then $\mathcal{M}_{\circ} \nVdash \Phi$ by $(\star)$.

Thus the quantifier-free theories of $\mathscr{K}^2_{\mathrm{all}} (\varsigma)$ and $\mathscr{K}^2_{\mathrm{fin}} (\varsigma)$ coincide with that of $\mathscr{K}^2_{2^N} (\varsigma)$, which is decidable by11 Proposition 4.2. $\Box$

Further, by modifying the above argument we get the following result.

Theorem 8.2. $\Pi_2 \text{-} \mathrm{Th}(\mathscr{K}^2_{\mathrm{fin}} (\varsigma))$ is decidable. Moreover,

$$ \begin{equation*} \Pi_2 \textit{-} \mathrm{Th}\bigl( \mathscr{K}^2_{\mathrm{fin}} (\varsigma) \bigr)= \Pi_2 \textit{-} \mathrm{Th} \bigl( \mathscr{K}^2_{\mathrm{all}} (\varsigma) \bigr). \end{equation*} \notag $$

Proof. Again, we may assume $\varsigma$ is finite.

Consider an arbitrary $\Pi_2$-$\mathscr{L}^2 (\varsigma)$-sentence $\Phi$. By definition, $\Phi$ has the form

$$ \begin{equation*} \forall\, x_0 \, \dots\, \forall\, x_n\ \exists\, y_0 \, \dots\, \exists\, y_k\ \Psi(x_0, \dots, x_n, y_1, \dots, y_0), \end{equation*} \notag $$
where $\Psi$ is quantifier-free. Let $\varsigma^{\ast}$ be the signature obtained from $\varsigma$ by adding $n$ new constant symbols $c_0$, …, $c_n$. Denote by $\mathrm{C}$ the collection of all constant symbols in $\varsigma^{\ast}$. Take $N$ to be the number of atomic $\varsigma^{\ast}$-sentences.

Next, we call a $\mathscr{L}^2(\varsigma^{\ast})$-structure $\mathcal{M}$ special if and only if each $c \in \{ c_1, \dots, c_n\}$ is interpreted rigidly, that is, for all $\omega_1, \omega_2 \in \Omega$,

$$ \begin{equation*} c^{\pi (\omega_1)}= c^{\pi (\omega_2)}. \end{equation*} \notag $$
Denote by $\mathscr{K}_{\bullet}$ the class of all such structures. Observe that
$$ \begin{equation*} \Phi\in \mathrm{Th} \bigl( \mathscr{K}^2_{\mathrm{all}} (\varsigma) \bigr) \quad \Longleftrightarrow \quad \exists\, \vec{y}\ \Psi (\mathbf{c},\vec{y})\in \mathrm{Th}(\mathscr{K}_{\bullet}), \end{equation*} \notag $$
where $\Psi (\mathbf{c},\vec{y})$ abbreviates $\Psi(c_1, \dots, c_n, y_1, \dots, y_k)$. And this remains true if we restrict ourselves to finite structures on both sides. So, it suffices to show that
$$ \begin{equation*} \exists\, \vec{y}\ \Psi (\mathbf{c},\vec{y})\in \mathrm{Th}(\mathscr{K}_{\bullet}) \quad \Longleftrightarrow \quad \exists\, \vec{y}\ \Psi (\mathbf{c},\vec{y})\in \mathrm{Th}(\mathscr{K}_{\bullet} \cap \mathscr{K}^2_{\mathrm{fin}} (\varsigma)). \end{equation*} \notag $$
The implication from left to right is obvious. For the other direction, suppose that $\exists\, \vec{y}\ \Psi (\mathbf{c},\vec{y}\,)$ does not belong to $\mathrm{Th}(\mathscr{K}_{\bullet})$, that is, $\mathcal{M} \nVdash \exists\, \vec{y}\ \Psi (\mathbf{c},\vec{y}\,)$ for some special $\mathscr{L}^2(\varsigma^{\ast})$-structure $\mathcal{M}$. Hence we also have $\mathcal{M} \nVdash \bigvee_{\vec{t} \in \mathrm{C}^k}\Psi(\mathbf{c}, \vec{t}\;)$. Then $\mathcal{M}_{\circ} \nVdash \bigvee_{\vec{t} \in \mathrm{C}^k} \Psi(\mathbf{c}, \vec{t}\;)$ by $(\star)$. Since $D_{\circ}$ equals $\mathrm{C}$, this is equivalent to $\mathcal{M}_{\circ} \nVdash \exists\, \vec{y}\ \Psi (\mathbf{c},\vec{y}\,)$. Note that $\mathcal{M}_{\circ}$ is special and has size at most $2^N$.

It follows that the $\Pi_2$-theories of $\mathscr{K}^2_{\mathrm{all}} (\varsigma)$ and $\mathscr{K}^2_{\mathrm{fin}} (\varsigma)$ coincide with that of $\mathscr{K}^2_{2^N} (\varsigma)$, which is decidable by Proposition 4.2. $\Box$

Then, instead of proving the analogous result for $\mathscr{L}_1$ directly, one can utilize a special translation of $\mathscr{L}_1$ into $\mathscr{L}_2$ described in § 6 of [1].

Given a signature $\varsigma$, let $\varsigma'$ be obtained from $\varsigma$ by adding countably many new constant symbols $c_0,c_1,c_2,\dots$ .

Theorem 8.3 (see [1]). Suppose that $\varsigma$ contains the equality symbol. Then there exists a computable translation $\tau^{12}$ of $\mathscr{L}_1 (\varsigma)$ into $\mathscr{L}_2 (\varsigma')$ such that, for all $\mathscr{L}_1 (\varsigma)$-sentences $\Phi$ and $\mathtt{s} \in \{ \mathrm{all}, \mathrm{fin}\}$,

$$ \begin{equation*} \Phi\in \mathrm{Th} \bigl( \mathscr{K}^1_{\mathtt{s}} (\varsigma) \bigr) \quad \Longleftrightarrow \quad \tau^{12} (\Phi)\in \mathrm{Th} \bigl( \mathscr{K}^2_{\mathtt{s}} (\varsigma') \bigr). \end{equation*} \notag $$
Moreover, for each $n \in \mathbb{N}$, if $\Phi$ is in $\Pi_{n + 2}$, so is $\tau^{12} (\Phi)$.

Combining Theorems 8.2 and 8.3, we get the following result.

Theorem 8.4. $\Pi_2 \text{-} \mathrm{Th}(\mathscr{K}^1_{\mathrm{fin}} (\varsigma))$ is decidable. Moreover,

$$ \begin{equation*} \Pi_2 \textit{-} \mathrm{Th} \bigl( \mathscr{K}^1_{\mathrm{fin}} (\varsigma) \bigr)= \Pi_2 \textit{-} \mathrm{Th} \bigl( \mathscr{K}^1_{\mathrm{all}} (\varsigma) \bigr). \end{equation*} \notag $$

Consequently, the undecidability results of §§ 6 and 7 turn out to be precise. So, the decision problems for $\mathscr{L}_1$ and $\mathscr{L}_2$ are solved.


Bibliography

1. M. Abadi and J. Y. Halpern, “Decidability and expressiveness for first-order logics of probability”, Inform. and Comput., 112:1 (1994), 1–36  crossref  mathscinet  zmath
2. E. Börger, E. Grädel, and Y. Gurevich, The classical decision problem, Perspect. Math. Logic, Springer-Verlag, Berlin, 1997  mathscinet  zmath
3. Yu. L. Ershov, I. A. Lavrov, A. D. Taimanov, and M. A. Taitslin, “Elementary theories”, Russian Math. Surveys, 20:4 (1965), 35–105  crossref  adsnasa
4. R. Fagin, J. Y. Halpern, and N. Megiddo, “A logic for reasoning about probabilities”, Inform. and Comput., 87:1–2 (1990), 78–128  crossref  mathscinet  zmath
5. J. Y. Halpern, “An analysis of first-order logics of probability”, Artificial Intelligence, 46:3 (1990), 311–350  crossref  mathscinet  zmath
6. D. Ibeling, T. Icard, K. Mierzewski, and M. Mossé, “Probing the quantitative–qualitative divide in probabilistic reasoning”, Ann. Pure Appl. Logic, 175:9 (2024), 103339  crossref  mathscinet  zmath
7. A. Nies, “Undecidable fragments of elementary theories”, Algebra Universalis, 35:1 (1996), 8–33  crossref  mathscinet  zmath
8. A. Perović, Z. Ognjanović, M. Rašković, and Z. Marković, “A probabilistic logic with polynomial weight formulas”, Foundations of information and knowledge systems (Pisa 2008), Lecture Notes in Comput. Sci., 4932, Springer, Berlin, 2008, 239–252  crossref  zmath
9. Z. Ognjanović, M. Rašković, and Z. Marković, Probability logics. Probability-based formalization of uncertain reasoning, Springer, Cham, 2016  crossref  mathscinet  zmath
10. R. M. Solovay, R. D. Arthan, and J. Harrison, “Some new results on decidability for elementary algebra and geometry”, Ann. Pure Appl. Logic, 163:12 (2012), 1765–1802  crossref  mathscinet  zmath
11. S. O. Speranskii, “Quantification over propositional formulas in probability logic: decidability issues”, Algebra and Logic, 50:4 (2011), 365–374  crossref
12. S. O. Speranski, “A note on hereditarily $\Pi^0_1$- and $\Sigma^0_1$-complete sets of sentences”, J. Logic Comput., 26:5 (2016), 1729–1741  crossref  mathscinet  zmath
13. S. O. Speranski, “Quantifying over events in probability logic: an introduction”, Math. Structures Comput. Sci., 27:8 (2017), 1581–1600  crossref  mathscinet  zmath
14. S. O. Speranski, “An ‘elementary’ perspective on reasoning about probability spaces”, Log. J. IGPL, 2024, jzae042, Publ. online  crossref
15. S. O. Speranski, “Sharpening complexity results in quantified probability logic”, Log. J. IGPL, 2024, jzae114, Publ. online  crossref
16. A. Tarski, A decision method for elementary algebra and geometry, 2nd ed., Univ. of California Press, Berkeley–Los Angeles, CA, 1951  mathscinet  zmath

Citation: S. O. Speranski, “On the decision problem for quantified probability logics”, Izv. Math., 89:3 (2025), 609–627
Citation in format AMSBIB
\Bibitem{Spe25}
\by S.~O.~Speranski
\paper On the decision problem for quantified probability logics
\jour Izv. Math.
\yr 2025
\vol 89
\issue 3
\pages 609--627
\mathnet{http://mi.mathnet.ru/eng/im9652}
\crossref{https://doi.org/10.4213/im9652e}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4918494}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2025IzMat..89..609S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001537878200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105008736001}
Linking options:
  • https://www.mathnet.ru/eng/im9652
  • https://doi.org/10.4213/im9652e
  • https://www.mathnet.ru/eng/im/v89/i3/p193
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025