Trudy Geometricheskogo Seminara
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Probl. Geom. Tr. Geom. Sem.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Geometricheskogo Seminara, 1973, Volume 4, Pages 155–165 (Mi intg41)  

The intrinsic normalizations of a line complex

V. I. Bliznikas, Z. Yu. Lupeikis
Abstract: In this paper the problem of intrinsic normalizations of a line complex in the three-dimensional real projective space is considered. The existence of such normalizations defined by some comitants of the third fundamental object is established. In some cases the geometrical constructions of such normalizations are given. Furthermore a pair of quadrics (each of them being an analogue of the canonical plane of a surface) is obtained.
Bibliographic databases:
Language: Russian
Citation: V. I. Bliznikas, Z. Yu. Lupeikis, “The intrinsic normalizations of a line complex”, Tr. Geom. Sem., 4, VINITI, Moscow, 1973, 155–165
Citation in format AMSBIB
\Bibitem{BliLup73}
\by V.~I.~Bliznikas, Z.~Yu.~Lupeikis
\paper The intrinsic normalizations of a~line complex
\serial Tr. Geom. Sem.
\yr 1973
\vol 4
\pages 155--165
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intg41}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=355853}
\zmath{https://zbmath.org/?q=an:0305.53009}
Linking options:
  • https://www.mathnet.ru/eng/intg41
  • https://www.mathnet.ru/eng/intg/v4/p155
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:294
    Full-text PDF :106
    References:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025