Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 209, Pages 25–32
DOI: https://doi.org/10.36535/0233-6723-2022-209-25-32
(Mi into1001)
 

This article is cited in 1 scientific paper (total in 1 paper)

On Ulam–Hyers stability of solutions to first-order differential equations with generalized action

E. Z. Zainullinaa, V. S. Pavlenkoa, A. N. Sesekinab, N. V. Gredasovaa

a Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
b N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (196 kB) Citations (1)
References:
Abstract: This paper is devoted to sufficient conditions for the Ulam–Hyers stability of solutions of first-order linear differential equations. We introduce the concept of the Ulam–Hyers stability for equations with unbounded right-hand sides whose solutions are functions of bounded variation and obtain sufficient conditions that guarantee this stability.
Keywords: Ulam–Hyers stability, differential equation, discontinuous solution.
Document Type: Article
UDC: 517.9
MSC: 34A37
Language: Russian
Citation: E. Z. Zainullina, V. S. Pavlenko, A. N. Sesekin, N. V. Gredasova, “On Ulam–Hyers stability of solutions to first-order differential equations with generalized action”,  Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 209, VINITI, Moscow, 2022, 25–32
Citation in format AMSBIB
\Bibitem{ZaiPavSes22}
\by E.~Z.~Zainullina, V.~S.~Pavlenko, A.~N.~Sesekin, N.~V.~Gredasova
\paper On Ulam--Hyers stability of solutions to first-order differential equations with generalized action
\inbook  Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 209
\pages 25--32
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1001}
\crossref{https://doi.org/10.36535/0233-6723-2022-209-25-32}
Linking options:
  • https://www.mathnet.ru/eng/into1001
  • https://www.mathnet.ru/eng/into/v209/p25
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025