Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 209, Pages 33–41
DOI: https://doi.org/10.36535/0233-6723-2022-209-33-41
(Mi into1002)
 

This article is cited in 1 scientific paper (total in 1 paper)

New bifurcation diagram in one model of vortex dynamics

G. P. Palshin

Financial University under the Government of the Russian Federation, Moscow
References:
Abstract: We consider a completely Liouville-integrable Hamiltonian system with two degrees of freedom, which includes two limit cases. The first system describes the dynamics of two vortex filaments in a Bose–Einstein condensate enclosed in a harmonic trap. The second system governs the dynamics of point vortices in an ideal fluid in a circular domain. For the case of vortices with arbitrary intensities, we explicitly reduce the problem to a system with one degree of freedom. For intensities of different signs, we detect a new bifurcation diagram, which has not been previously encountered in works on this topic. Also, we obtain a separating curve, which is related to the change of the projections of Liouville tori without changing their number.
Keywords: vortex dynamics, completely integrable Hamiltonian system, bifurcation diagram, integral mapping, bifurcations of Liouville tori, Bose–Einstein condensate.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00399
This work was supported by the Russian Foundation for Basic Research (project No. 20-01-00399).
Document Type: Article
UDC: 517.938.5, 512.7
Language: Russian
Citation: G. P. Palshin, “New bifurcation diagram in one model of vortex dynamics”,  Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 209, VINITI, Moscow, 2022, 33–41
Citation in format AMSBIB
\Bibitem{Pal22}
\by G.~P.~Palshin
\paper New bifurcation diagram in one model of vortex dynamics
\inbook  Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 209
\pages 33--41
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1002}
\crossref{https://doi.org/10.36535/0233-6723-2022-209-33-41}
Linking options:
  • https://www.mathnet.ru/eng/into1002
  • https://www.mathnet.ru/eng/into/v209/p33
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025