Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 210, Pages 35–48
DOI: https://doi.org/10.36535/0233-6723-2022-210-35-48
(Mi into1013)
 

On the theory of periodic solutions of systems of hyperbolic equations in the plane

A. T. Assanova

Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science, Republic of Kazakhstan, Almaty
References:
Abstract: A periodic problem on the plane for a system of second-order hyperbolic equations with mixed derivatives is considered. The existence of a unique classical solution of the problem is examined and methods of constructing it are discussed.
Keywords: system of hyperbolic equations, doubly periodic solution, solvability, algorithm, method of functional parameters.
Document Type: Article
UDC: 517.956.3
Language: Russian
Citation: A. T. Assanova, “On the theory of periodic solutions of systems of hyperbolic equations in the plane”, Geometry, Mechanics, and Differential Equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 210, VINITI, Moscow, 2022, 35–48
Citation in format AMSBIB
\Bibitem{Ass22}
\by A.~T.~Assanova
\paper On the theory of periodic solutions of systems of hyperbolic equations in the plane
\inbook Geometry, Mechanics, and Differential Equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 210
\pages 35--48
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1013}
\crossref{https://doi.org/10.36535/0233-6723-2022-210-35-48}
Linking options:
  • https://www.mathnet.ru/eng/into1013
  • https://www.mathnet.ru/eng/into/v210/p35
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:164
    Full-text PDF :85
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025