Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 211, Pages 14–28
DOI: https://doi.org/10.36535/0233-6723-2022-211-14-28
(Mi into1022)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the solvability of some boundary-value problems for the fractional analog of the nonlocal Laplace equation

B. Kh. Turmetova, B. J. Kadirkulovb

a Kh. Yasavi International Kazakh-Turkish University
b Tashkent State Institute of Oriental Studies
Full-text PDF (570 kB) Citations (1)
References:
Abstract: In this paper, we examine methods for solving the Dirichlet boundary-value problem and the periodic boundary-value problem for one class of nonlocal second-order partial differential equations with involutive argument mappings. The concept of a nonlocal analog of the Laplace equation is introduced. A method for constructing eigenfunctions and eigenvalues of the spectral problem based on separation of variables is proposed. The completeness of the system of eigenfunctions is examined. The concept of a fractional analog of the nonlocal Laplace equation is introduced. For this equation, boundary-value problems with the Dirichlet and periodic conditions are considered. The well-posedness of these problems is verified and the existence and uniqueness of the solution of boundary-value problems are proved.
Keywords: Gerasimov–Caputo fractional derivative, nonlocal differential equation, involution, Dirichlet problem, periodic boundary-value problem, eigenfunction, Mittag-Leffler function, Fourier series.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan AP08855810
This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan (project No. AP08855810).
Document Type: Article
UDC: 517.956
MSC: 34K37,35A09, 35J25
Language: Russian
Citation: B. Kh. Turmetov, B. J. Kadirkulov, “On the solvability of some boundary-value problems for the fractional analog of the nonlocal Laplace equation”, Geometry, Mechanics, and Differential Equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 211, VINITI, Moscow, 2022, 14–28
Citation in format AMSBIB
\Bibitem{TurKad22}
\by B.~Kh.~Turmetov, B.~J.~Kadirkulov
\paper On the solvability of some boundary-value problems for the fractional analog of the nonlocal Laplace equation
\inbook Geometry, Mechanics, and Differential Equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 211
\pages 14--28
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1022}
\crossref{https://doi.org/10.36535/0233-6723-2022-211-14-28}
Linking options:
  • https://www.mathnet.ru/eng/into1022
  • https://www.mathnet.ru/eng/into/v211/p14
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025