Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 212, Pages 84–91
DOI: https://doi.org/10.36535/0233-6723-2022-212-84-91
(Mi into1037)
 

Numerical solution of a linear-quadratic optimal control problem based on nonlocal methods

V. A. Srochkoa, V. G. Antonika, E. V. Aksenyushkinab

a Irkutsk State University
b Baikal State University
References:
Abstract: In this paper, a convex linear-quadratic problem is considered within the class of nonlocal descent methods. The uniqueness of solutions of the phase and conjugate systems is established. The convergence of iterative methods with respect to the cost functional is proved.
Keywords: linear-quadratic problem, exact formulas for the increment of a functional, methods of nonlocal improvement.
Document Type: Article
UDC: 517.977
MSC: 49J15, 49M25
Language: Russian
Citation: V. A. Srochko, V. G. Antonik, E. V. Aksenyushkina, “Numerical solution of a linear-quadratic optimal control problem based on nonlocal methods”, Geometry, Mechanics, and Differential Equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 212, VINITI, Moscow, 2022, 84–91
Citation in format AMSBIB
\Bibitem{SroAntAks22}
\by V.~A.~Srochko, V.~G.~Antonik, E.~V.~Aksenyushkina
\paper Numerical solution of a linear-quadratic optimal control problem based on nonlocal methods
\inbook Geometry, Mechanics, and Differential Equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 212
\pages 84--91
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1037}
\crossref{https://doi.org/10.36535/0233-6723-2022-212-84-91}
Linking options:
  • https://www.mathnet.ru/eng/into1037
  • https://www.mathnet.ru/eng/into/v212/p84
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025