Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 212, Pages 92–99
DOI: https://doi.org/10.36535/0233-6723-2022-212-92-99
(Mi into1038)
 

This article is cited in 1 scientific paper (total in 1 paper)

Variational statement of a coefficient inverse problem for a multidimensional parabolic equation

R. K. Tagiyev, Sh. I. Maharramli

Baku State University
Full-text PDF (218 kB) Citations (1)
References:
Abstract: In this paper, we consider the variational statement of an inverse problem of determining the leading coefficient of a multidimensional parabolic equation with nonlocal conditions. The leading coefficient of the equation playing the role of a control function is an element of the Sobolev space. The objective functional is based on the overdetermination condition, which can be interpreted as setting the weighted average value of the solution of the equation considered with respect to the time variable. The well-posedness of the problem in the weak topology of the control space is examined, the Fréchet differentiability of the objective functional is proved, and a necessary optimality condition is obtained.
Keywords: inverse problem, parabolic equation, integral boundary condition, well-posedness, necessary optimality condition.
Document Type: Proceedings
UDC: 517.956.47
MSC: 49K20, 35K2
Language: Russian
Citation: R. K. Tagiyev, Sh. I. Maharramli, “Variational statement of a coefficient inverse problem for a multidimensional parabolic equation”, Geometry, Mechanics, and Differential Equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 212, VINITI, Moscow, 2022, 92–99
Citation in format AMSBIB
\Bibitem{TagMah22}
\by R.~K.~Tagiyev, Sh.~I.~Maharramli
\paper Variational statement of a coefficient inverse problem for a multidimensional parabolic equation
\inbook Geometry, Mechanics, and Differential Equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 212
\pages 92--99
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1038}
\crossref{https://doi.org/10.36535/0233-6723-2022-212-92-99}
Linking options:
  • https://www.mathnet.ru/eng/into1038
  • https://www.mathnet.ru/eng/into/v212/p92
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:210
    Full-text PDF :75
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026