Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 217, Pages 3–10
DOI: https://doi.org/10.36535/0233-6723-2022-217-3-10
(Mi into1091)
 

On branching of periodic solutions of quasilinear systems of ordinary differential equations

V. V. Abramov, E. Yu. Liskina

Ryazan State University S. A. Esenin
References:
Abstract: In this paper, a normal system of ordinary differential equations with a small parameter is examined. We obtain conditions for the existence and stability of a periodic solution, which, at the zero value of the parameter, satisfies a linear homogeneous system. The reasoning is based on the analysis of properties of the monodromy operator.
Keywords: differential equation, periodic solution, small parameter, monodromy operator.
Document Type: Article
UDC: 517.925.52
MSC: 34C25
Language: Russian
Citation: V. V. Abramov, E. Yu. Liskina, “On branching of periodic solutions of quasilinear systems of ordinary differential equations”, Algebra, geometry, differential equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 217, VINITI, Moscow, 2022, 3–10
Citation in format AMSBIB
\Bibitem{AbrLis22}
\by V.~V.~Abramov, E.~Yu.~Liskina
\paper On branching of periodic solutions of quasilinear systems of ordinary differential equations
\inbook Algebra, geometry, differential equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 217
\pages 3--10
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1091}
\crossref{https://doi.org/10.36535/0233-6723-2022-217-3-10}
Linking options:
  • https://www.mathnet.ru/eng/into1091
  • https://www.mathnet.ru/eng/into/v217/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026