|
Hyperbolic first-order covariant evolution equations for vector fields in $\mathbb{R}^3$
Yu. P. Virchenkoa, A. E. Novoseltsevab a Belgorod State University
b Belgorod Shukhov State Technological University
Abstract:
The class $\mathfrak{K}_1(\mathbb{R}^3)$ of systems of first-order quasilinear partial differential equations is considered. Such systems $\dot{\boldsymbol{u}}=\mathsf{L}[\boldsymbol{u}]$ describe the evolution of vector fields $\boldsymbol{u}(\boldsymbol{x},t)$, $\boldsymbol{x}\in\mathbb{R}^3$ in time $t\in\mathbb{R}$. The class $\mathfrak{K}_1(\mathbb{R}^3)$ consists of all systems that are invariant under translations in time $t\in\mathbb{R}$ and space $\mathbb{R}^3$ and are covariant under rotations of $\mathbb{R}^3$. We describe the class of first-order nonlinear differential operators $\mathsf{L}$ acting in the functional space $C_{1,\operatorname{loc}}(\mathbb{R}^3)$ that are evolution generators of such systems. We obtain a necessary and sufficient condition for the operator $\mathsf{L}\in\mathfrak{K}_1(\mathbb{R}^3)$ to generate a hyperbolic system.
Keywords:
first-order differential operator, quasilinear system, hyperbolicity, vector field, covariance, spherical symmetry.
Citation:
Yu. P. Virchenko, A. E. Novoseltseva, “Hyperbolic first-order covariant evolution equations for vector fields in $\mathbb{R}^3$”, Algebra, geometry, differential equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 217, VINITI, Moscow, 2022, 20–28
Linking options:
https://www.mathnet.ru/eng/into1093 https://www.mathnet.ru/eng/into/v217/p20
|
|