Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 217, Pages 37–40
DOI: https://doi.org/10.36535/0233-6723-2022-217-37-40
(Mi into1095)
 

Boundary behavior of solutions to the Dirichlet problem for the heat equation in a domain whose lateral boundary satisfies the Hölder condition with exponent less than $1/2$

A. N. Konenkov

Ryazan State University S. A. Esenin
References:
Abstract: For the heat equation with one space variable, we examine solutions of the first boundary-value problem in a domain whose lateral boundary possesses a model singularity, namely, the curve describing the lateral boundary is smooth everywhere except for one point and belongs to the Hölder class with exponent less than $1 /2$. We prove that if a solution is positive in some neighborhood of the singular point and vanishes on the lateral boundary in this neighborhood, then the first derivative of this solution unboundedly increases in any neighbourhood of the singular point.
Keywords: heat equation, first boundary-value problem, nonsmooth lateral boundary, barrier method.
Document Type: Article
UDC: 517.95
MSC: 35A08, 35K10, 35D30
Language: Russian
Citation: A. N. Konenkov, “Boundary behavior of solutions to the Dirichlet problem for the heat equation in a domain whose lateral boundary satisfies the Hölder condition with exponent less than $1/2$”, Algebra, geometry, differential equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 217, VINITI, Moscow, 2022, 37–40
Citation in format AMSBIB
\Bibitem{Kon22}
\by A.~N.~Konenkov
\paper Boundary behavior of solutions to the Dirichlet problem for the heat equation in a domain whose lateral boundary satisfies the H\"older condition with exponent less than $1/2$
\inbook Algebra, geometry, differential equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 217
\pages 37--40
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1095}
\crossref{https://doi.org/10.36535/0233-6723-2022-217-37-40}
Linking options:
  • https://www.mathnet.ru/eng/into1095
  • https://www.mathnet.ru/eng/into/v217/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:107
    Full-text PDF :46
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026