Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 224, Pages 10–18
DOI: https://doi.org/10.36535/0233-6723-2023-224-10-18
(Mi into1166)
 

This article is cited in 1 scientific paper (total in 1 paper)

Necessary and sufficient criteria of Lyapunov stability for systems of ordinary differential equations

S. G. Bulanovab

a A.P. Chekhov Taganrog Institute (branch) of Rostov State Economical University
b Rostov State University of Economics
Full-text PDF (203 kB) Citations (1)
References:
DOI: https://doi.org/10.36535/0233-6723-2023-224-10-18
Abstract: Necessary and sufficient criteria of Lyapunov stability for systems of ordinary differential equations are obtained. The criteria are obtained in the multiplicative form based on the transformation of difference schemes for numerical integration and are converted to the additive and integral forms. The formal restrictions for these criteria are constructed and their applicability conditions are indicated.
Keywords: Lyapunov stability, computer stability analysis, numerical modeling of stability.
Document Type: Article
UDC: 519.6
MSC: 34D20
Language: Russian
Citation: S. G. Bulanov, “Necessary and sufficient criteria of Lyapunov stability for systems of ordinary differential equations”, Differential Equations and Optimal Control, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 224, VINITI, Moscow, 2023, 10–18
Citation in format AMSBIB
\Bibitem{Bul23}
\by S.~G.~Bulanov
\paper Necessary and sufficient criteria of Lyapunov stability for systems of ordinary differential equations
\inbook Differential Equations and Optimal Control
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 224
\pages 10--18
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1166}
Linking options:
  • https://www.mathnet.ru/eng/into1166
  • https://www.mathnet.ru/eng/into/v224/p10
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025