Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 224, Pages 28–34
DOI: https://doi.org/10.36535/0233-6723-2023-224-28-34
(Mi into1168)
 

First boundary-value problem for a class of elliptic systems in a half-space

E. A. Golovko

Irkutsk State University
References:
DOI: https://doi.org/10.36535/0233-6723-2023-224-28-34
Abstract: Using the Fourier transform, we examine the first boundary-value problem for two elliptic systems in a half-space. We prove that for both systems, the homogeneous problem has infinitely many solutions depending on one arbitrary function. At the same time, one of the systems is strongly connected under certain conditions for the coefficients of the system, whereas the second system is always strongly connected.
Keywords: elliptic system, first boundary-value problem, Dirichlet problem, strongly connected systems, Fourier transform.
Document Type: Article
UDC: 517.956.2
MSC: 35J57
Language: Russian
Citation: E. A. Golovko, “First boundary-value problem for a class of elliptic systems in a half-space”, Differential Equations and Optimal Control, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 224, VINITI, Moscow, 2023, 28–34
Citation in format AMSBIB
\Bibitem{Gol23}
\by E.~A.~Golovko
\paper First boundary-value problem for a class of elliptic systems in a half-space
\inbook Differential Equations and Optimal Control
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 224
\pages 28--34
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1168}
Linking options:
  • https://www.mathnet.ru/eng/into1168
  • https://www.mathnet.ru/eng/into/v224/p28
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:99
    Full-text PDF :53
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026