Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 224, Pages 43–53
DOI: https://doi.org/10.36535/0233-6723-2023-224-43-53
(Mi into1170)
 

Closed-loop state feedback in linear problems of terminal control

N. M. Dmitruk

Belarusian State University, Minsk
References:
DOI: https://doi.org/10.36535/0233-6723-2023-224-43-53
Abstract: We consider the optimal control problem for a linear discrete system with unknown limited disturbances, which must be transferred to a terminal set in a finite time, while providing a minimum guaranteed value of the terminal quality criterion. We discuss two approaches to constructing optimal feedbacks: the disconnectable feedback, which is determined through optimal guarantee programs, and the closed feedback based on optimal control strategies with closures. We discuss disadvantages of the first approach and propose an effective method of constructing optimal closed real-time feedback.
Keywords: linear system, disturbance, optimal control, feedback, real-time control.
Document Type: Article
UDC: 517.977.5
MSC: 93C05, 93B52, 49N05
Language: Russian
Citation: N. M. Dmitruk, “Closed-loop state feedback in linear problems of terminal control”, Differential Equations and Optimal Control, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 224, VINITI, Moscow, 2023, 43–53
Citation in format AMSBIB
\Bibitem{Dmi23}
\by N.~M.~Dmitruk
\paper Closed-loop state feedback in linear problems of terminal control
\inbook Differential Equations and Optimal Control
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 224
\pages 43--53
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1170}
Linking options:
  • https://www.mathnet.ru/eng/into1170
  • https://www.mathnet.ru/eng/into/v224/p43
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025