Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 224, Pages 65–70
DOI: https://doi.org/10.36535/0233-6723-2023-224-65-70
(Mi into1172)
 

On the asymptotics of the Goursat problem with a power boundary layer

I. V. Zakharova

Irkutsk State University
References:
DOI: https://doi.org/10.36535/0233-6723-2023-224-65-70
Abstract: In this paper, we consider the Goursat problem for a partial differential equation containing a small parameter $\varepsilon$ in the coefficient of the highest derivative. For $\varepsilon=0$, the order of the equation does not decrease, but a singularity appears, which has the nature of a power boundary layer. A solution of the singularly perturbed Gaussian problem is constructed in the form of a formal series in powers of the small parameter. The asymptotic nature of the constructed series is proved.
Keywords: singularly perturbed differential equation, asymptotic integration, power boundary layer, Goursat problem.
Document Type: Article
UDC: 517.928
MSC: 34E15
Language: Russian
Citation: I. V. Zakharova, “On the asymptotics of the Goursat problem with a power boundary layer”, Differential Equations and Optimal Control, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 224, VINITI, Moscow, 2023, 65–70
Citation in format AMSBIB
\Bibitem{Zak23}
\by I.~V.~Zakharova
\paper On the asymptotics of the Goursat problem with a power boundary layer
\inbook Differential Equations and Optimal Control
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 224
\pages 65--70
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1172}
Linking options:
  • https://www.mathnet.ru/eng/into1172
  • https://www.mathnet.ru/eng/into/v224/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025