Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 225, Pages 28–37
DOI: https://doi.org/10.36535/0233-6723-2023-225-28-37
(Mi into1185)
 

This article is cited in 2 scientific papers (total in 2 papers)

Stability criteria for systems of ordinary differential equations

S. G. Bulanovab

a A.P. Chekhov Taganrog Institute (branch) of Rostov State Economical University
b Rostov State University of Economics
Full-text PDF (192 kB) Citations (2)
References:
DOI: https://doi.org/10.36535/0233-6723-2023-225-28-37
Abstract: In this paper, we present criteria of stability in the Lyapunov sense for systems of ordinary differential equations based on transformations of difference schemes. The purpose of the transformations is to obtain the dependence of the magnitude of the perturbation of the solution at an arbitrary point in time on the perturbation of the initial data.
Keywords: Lyapunov stability, computer analysis of stability, numerical simulation of stability.
Document Type: Article
UDC: 519.6
MSC: 34D20
Language: Russian
Citation: S. G. Bulanov, “Stability criteria for systems of ordinary differential equations”, Differential Equations and Mathematical Physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 225, VINITI, Moscow, 2023, 28–37
Citation in format AMSBIB
\Bibitem{Bul23}
\by S.~G.~Bulanov
\paper Stability criteria for systems of ordinary differential equations
\inbook Differential Equations and Mathematical Physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 225
\pages 28--37
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1185}
Linking options:
  • https://www.mathnet.ru/eng/into1185
  • https://www.mathnet.ru/eng/into/v225/p28
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025