|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 225, Pages 38–58 DOI: https://doi.org/10.36535/0233-6723-2023-225-38-58
(Mi into1186)
|
|
|
|
Kac–Siegert formula for oscillatory random processes
Yu. P. Virchenkoab, A. S. Mazmanishvilic a Belgorod Shukhov State Technological University
b Belgorod State University
c National Science Centre Kharkov Institute of Physics and Technology
DOI:
https://doi.org/10.36535/0233-6723-2023-225-38-58
Abstract:
A general scheme for calculating the characteristic functions of random variables represented by quadratic functionals of the trajectories of elementary Gaussian processes based on the Feynman—Kac method is described. This scheme is applied to the oscillatory random process $\langle{\tilde x}(t)$, $t \in {\Bbb R}\rangle$. The characteristic function $Q(-i\lambda,t)$ of the random variable $\mathsf{J}_t[{\tilde x}(s)]=\int_0^t (d {\tilde x}(s)/ds )^2 ds$ of its random trajectories ${\tilde x}(t)$ is calculated.
Keywords:
oscillatory random process, matrix Riccati equation, white noise, Kolmogorov equation, characteristic function.
Citation:
Yu. P. Virchenko, A. S. Mazmanishvili, “Kac–Siegert formula for oscillatory random processes”, Differential Equations and Mathematical Physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 225, VINITI, Moscow, 2023, 38–58
Linking options:
https://www.mathnet.ru/eng/into1186 https://www.mathnet.ru/eng/into/v225/p38
|
|