Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 225, Pages 69–72
DOI: https://doi.org/10.36535/0233-6723-2023-225-69-72
(Mi into1188)
 

Extreme paths on graphs with simultaneously varying arc durations

I. M. Erusalimskyi, M. I. Osipov, V. A. Skorokhodov

Southern Federal University, Rostov-on-Don
References:
DOI: https://doi.org/10.36535/0233-6723-2023-225-69-72
Abstract: In this paper, we propose an algorithm for finding the fastest path on a graph with two weights on each arc, namely, the times required to pass the arc before the beginning of rush hour and during rush hours, if the time of the beginning of rush hours is also indicated. The algorithm proposed can be considered a modification of the classical E. Dijkstra algorithm.
Keywords: weighted graph, arc weight, shortest time path, Dijkstra's algorithm, rush hour.
Document Type: Article
UDC: 519.1
MSC: 05C38
Language: Russian
Citation: I. M. Erusalimskyi, M. I. Osipov, V. A. Skorokhodov, “Extreme paths on graphs with simultaneously varying arc durations”, Differential Equations and Mathematical Physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 225, VINITI, Moscow, 2023, 69–72
Citation in format AMSBIB
\Bibitem{EruOsiSko23}
\by I.~M.~Erusalimskyi, M.~I.~Osipov, V.~A.~Skorokhodov
\paper Extreme paths on graphs with simultaneously varying arc durations
\inbook Differential Equations and Mathematical Physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 225
\pages 69--72
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1188}
Linking options:
  • https://www.mathnet.ru/eng/into1188
  • https://www.mathnet.ru/eng/into/v225/p69
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025