Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 225, Pages 87–107
DOI: https://doi.org/10.36535/0233-6723-2023-225-87-107
(Mi into1190)
 

On the local extension of the group of parallel translations of four-dimensional space

V. A. Kyrov

Gorno-Altaisk State University
References:
DOI: https://doi.org/10.36535/0233-6723-2023-225-87-107
Abstract: The problem of the search for all locally boundedly exactly doubly transitive extensions of the group of parallel translations of a four-dimensional space is reduced to the calculation of the Lie algebras of locally boundedly exactly doubly transitive extensions of the group of parallel translations. Some locally boundedly exactly doubly transitive transformation Lie groups with decomposable Lie algebras are found.
Keywords: transitive transformation group, group of parallel translations, Lie algebra, Jordan form.
Document Type: Article
UDC: 512.816.3
MSC: 22F05
Language: Russian
Citation: V. A. Kyrov, “On the local extension of the group of parallel translations of four-dimensional space”, Differential Equations and Mathematical Physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 225, VINITI, Moscow, 2023, 87–107
Citation in format AMSBIB
\Bibitem{Kyr23}
\by V.~A.~Kyrov
\paper On the local extension of the group of parallel translations of four-dimensional space
\inbook Differential Equations and Mathematical Physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 225
\pages 87--107
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1190}
Linking options:
  • https://www.mathnet.ru/eng/into1190
  • https://www.mathnet.ru/eng/into/v225/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025