|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 225, Pages 123–133 DOI: https://doi.org/10.36535/0233-6723-2023-225-123-133
(Mi into1193)
|
|
|
|
On an exact estimate of the number of real invariant lines of polynomial vector fields of degree $n$
A. D. Ushkho, V. B. Tlyachev, D. S. Ushkho Adyghe State University, Maikop
DOI:
https://doi.org/10.36535/0233-6723-2023-225-123-133
Abstract:
In this paper, we prove that a polynomial vector field of degree $n$ that has two invariant sets, each of which consists of ${n-1}$ pairwise real invariant straight lines, has at most ${2n+4}$ invariant straight lines, where $n$ is odd and $n\geq3$.
Keywords:
polynomial vector field, invariant straight line, invariant set, nodal point, rectangle, golden ratio.
Citation:
A. D. Ushkho, V. B. Tlyachev, D. S. Ushkho, “On an exact estimate of the number of real invariant lines of polynomial vector fields of degree $n$”, Differential Equations and Mathematical Physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 225, VINITI, Moscow, 2023, 123–133
Linking options:
https://www.mathnet.ru/eng/into1193 https://www.mathnet.ru/eng/into/v225/p123
|
| Statistics & downloads: |
| Abstract page: | 106 | | Full-text PDF : | 45 | | References: | 44 |
|