Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 226, Pages 120–126
DOI: https://doi.org/10.36535/0233-6723-2023-226-120-126
(Mi into1207)
 

Scattering problem for one non-self-adjoint Sturm–Liouville operator

R. G. Farzullazadeha, Kh. R. Mamedovb

a Lankaran State University
b Iğdır University
References:
DOI: https://doi.org/10.36535/0233-6723-2023-226-120-126
Abstract: The scattering problem is considered for a class of second-order differential equations on a semi-infinite interval with a nonlinear spectral parameter in the boundary condition. The scattering data of the problem are determined and the fundamental equation of the inverse scattering problem is obtained.
Keywords: normalization polynomial, scattering function, scattering data, fundamental equation.
Document Type: Article
UDC: 517.9
MSC: 34L25, 34B07, 34B08
Language: Russian
Citation: R. G. Farzullazadeh, Kh. R. Mamedov, “Scattering problem for one non-self-adjoint Sturm–Liouville operator”, Differential Equations and Mathematical Physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 226, VINITI, Moscow, 2023, 120–126
Citation in format AMSBIB
\Bibitem{FarMam23}
\by R.~G.~Farzullazadeh, Kh.~R.~Mamedov
\paper Scattering problem for one non-self-adjoint Sturm--Liouville operator
\inbook Differential Equations and Mathematical Physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 226
\pages 120--126
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1207}
Linking options:
  • https://www.mathnet.ru/eng/into1207
  • https://www.mathnet.ru/eng/into/v226/p120
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:199
    Full-text PDF :73
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025