Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 227, Pages 20–40
DOI: https://doi.org/10.36535/0233-6723-2023-227-20-40
(Mi into1215)
 

Reconstruction of characteristic functions of quadratic functionals on trajectories of Gaussian stochastic processes

Yu. P. Virchenkoa, A. S. Mazmanishvilib

a Belgorod Shukhov State Technological University
b National Science Centre Kharkov Institute of Physics and Technology
References:
DOI: https://doi.org/10.36535/0233-6723-2023-227-20-40
Abstract: In this paper, we examine the characteristic functions $Q_J(-i\lambda)$, $\lambda \in {\mathbb R}$, of stochastic variables determined by the values of the quadratic functionals $\mathsf{J}[\tilde{x}(t)]$ on the space ${\mathbb L}_2 [0, T]$ of trajectories of homogeneous Gaussian stochastic processes. We justify a method for calculating such characteristic functions, called reconstruction in the work, the application of which is not related to the use of the well-known Karhunen–Loeve–Pugachev method.
Keywords: Gaussian stochastic process, integral quadratic functional, correlation function, self-adjoint operator, characteristic function
Document Type: Article
UDC: 519.218.7
MSC: 60G15
Language: Russian
Citation: Yu. P. Virchenko, A. S. Mazmanishvili, “Reconstruction of characteristic functions of quadratic functionals on trajectories of Gaussian stochastic processes”, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 227, VINITI, Moscow, 2023, 20–40
Citation in format AMSBIB
\Bibitem{VirMaz23}
\by Yu.~P.~Virchenko, A.~S.~Mazmanishvili
\paper Reconstruction of characteristic functions of quadratic functionals on trajectories of Gaussian stochastic processes
\inbook Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 227
\pages 20--40
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1215}
Linking options:
  • https://www.mathnet.ru/eng/into1215
  • https://www.mathnet.ru/eng/into/v227/p20
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025