|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 227, Pages 20–40 DOI: https://doi.org/10.36535/0233-6723-2023-227-20-40
(Mi into1215)
|
|
|
|
Reconstruction of characteristic functions of quadratic functionals on trajectories of Gaussian stochastic processes
Yu. P. Virchenkoa, A. S. Mazmanishvilib a Belgorod Shukhov State Technological University
b National Science Centre Kharkov Institute of Physics and Technology
DOI:
https://doi.org/10.36535/0233-6723-2023-227-20-40
Abstract:
In this paper, we examine the characteristic functions $Q_J(-i\lambda)$, $\lambda \in {\mathbb R}$, of stochastic variables determined by the values of the quadratic functionals $\mathsf{J}[\tilde{x}(t)]$ on the space ${\mathbb L}_2 [0, T]$ of trajectories of homogeneous Gaussian stochastic processes. We justify a method for calculating such characteristic functions, called reconstruction in the work, the application of which is not related to the use of the well-known Karhunen–Loeve–Pugachev method.
Keywords:
Gaussian stochastic process, integral quadratic functional, correlation function, self-adjoint operator, characteristic function
Citation:
Yu. P. Virchenko, A. S. Mazmanishvili, “Reconstruction of characteristic functions of quadratic functionals on trajectories of Gaussian stochastic processes”, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 227, VINITI, Moscow, 2023, 20–40
Linking options:
https://www.mathnet.ru/eng/into1215 https://www.mathnet.ru/eng/into/v227/p20
|
|