|
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 229, Pages 120–130 DOI: https://doi.org/10.36535/0233-6723-2023-229-120-130
(Mi into1239)
|
|
|
|
Optimization of thermal processes in a nonlocal problem with a redefinition function under an integral condition
T. K. Yuldashev, G. K. Abdurakhmanova Tashkent State University of Economics
DOI:
https://doi.org/10.36535/0233-6723-2023-229-120-130
Abstract:
In this paper, we examine the weak generalized solvability of an inverse optimization problem for the heat equation with a nonlocal boundary condition and a nonlinear target performance. We formulate necessary optimality conditions and reduce the search for a control function to a functional integral equation.
Keywords:
heat equation, nonlinear inverse problem, optimal control, nonlinear control, minimization of a functional
Citation:
T. K. Yuldashev, G. K. Abdurakhmanova, “Optimization of thermal processes in a nonlocal problem with a redefinition function under an integral condition”, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 3, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 229, VINITI, Moscow, 2023, 120–130
Linking options:
https://www.mathnet.ru/eng/into1239 https://www.mathnet.ru/eng/into/v229/p120
|
| Statistics & downloads: |
| Abstract page: | 149 | | Full-text PDF : | 67 | | References: | 61 |
|